Пример #1
0
    /// @brief Computes saturation from surface volume
    void computeSaturation(const BlackoilPropertiesInterface& props,
                           BlackoilState& state)
    {

        const int np = props.numPhases();
        const int nc = props.numCells();
        std::vector<double> allA(nc*np*np);
        std::vector<int> allcells(nc);
        for (int c = 0; c < nc; ++c) {
            allcells[c] = c;
        }

        //std::vector<double> res_vol(np);
        const std::vector<double>& z = state.surfacevol();

        props.matrix(nc, &state.pressure()[0], &z[0], &allcells[0], &allA[0], 0);

        // Linear solver.
        MAT_SIZE_T n = np;
        MAT_SIZE_T nrhs = 1;
        MAT_SIZE_T lda = np;
        std::vector<MAT_SIZE_T> piv(np);
        MAT_SIZE_T ldb = np;
        MAT_SIZE_T info = 0;


        //double res_vol;
        double tot_sat;
        const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());

        for (int c = 0; c < nc; ++c) {
            double* A = &allA[c*np*np];
            const double* z_loc = &z[c*np];
            double* s = &state.saturation()[c*np];

            for (int p = 0; p < np; ++p){
                s[p] = z_loc[p];
                }

            dgesv_(&n, &nrhs, &A[0], &lda, &piv[0], &s[0], &ldb, &info);

            tot_sat = 0;
            for (int p = 0; p < np; ++p){
                if (s[p] < epsilon) // saturation may be less then zero due to round of errors
                    s[p] = 0;

                tot_sat += s[p];
            }

            for (int p = 0; p < np; ++p){
                s[p]  = s[p]/tot_sat;
            }





        }

    }
Пример #2
0
 /// @brief Computes injected and produced surface volumes of all phases.
 /// Note 1: assumes that only the first phase is injected.
 /// Note 2: assumes that transport has been done with an
 ///         implicit method, i.e. that the current state
 ///         gives the mobilities used for the preceding timestep.
 /// Note 3: Gives surface volume values, not reservoir volumes
 ///         (as the incompressible version of the function does).
 ///         Also, assumes that transport_src is given in surface volumes
 ///         for injector terms!
 /// @param[in]  props           fluid and rock properties.
 /// @param[in]  state           state variables (pressure, sat, surfvol)
 /// @param[in]  transport_src   if < 0: total resv outflow, if > 0: first phase surfv inflow
 /// @param[in]  dt              timestep used
 /// @param[out] injected        must point to a valid array with P elements,
 ///                             where P = s.size()/src.size().
 /// @param[out] produced        must also point to a valid array with P elements.
 void computeInjectedProduced(const BlackoilPropertiesInterface& props,
                              const BlackoilState& state,
                              const std::vector<double>& transport_src,
                              const double dt,
                              double* injected,
                              double* produced)
 {
     const int num_cells = transport_src.size();
     if (props.numCells() != num_cells) {
         OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
     }
     const int np = props.numPhases();
     if (int(state.saturation().size()) != num_cells*np) {
         OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
     }
     const std::vector<double>& press = state.pressure();
     const std::vector<double>& temp = state.temperature();
     const std::vector<double>& s = state.saturation();
     const std::vector<double>& z = state.surfacevol();
     std::fill(injected, injected + np, 0.0);
     std::fill(produced, produced + np, 0.0);
     std::vector<double> visc(np);
     std::vector<double> mob(np);
     std::vector<double> A(np*np);
     std::vector<double> prod_resv_phase(np);
     std::vector<double> prod_surfvol(np);
     for (int c = 0; c < num_cells; ++c) {
         if (transport_src[c] > 0.0) {
             // Inflowing transport source is a surface volume flux
             // for the first phase.
             injected[0] += transport_src[c]*dt;
         } else if (transport_src[c] < 0.0) {
             // Outflowing transport source is a total reservoir
             // volume flux.
             const double flux = -transport_src[c]*dt;
             const double* sat = &s[np*c];
             props.relperm(1, sat, &c, &mob[0], 0);
             props.viscosity(1, &press[c], &temp[c], &z[np*c], &c, &visc[0], 0);
             props.matrix(1, &press[c], &temp[c], &z[np*c], &c, &A[0], 0);
             double totmob = 0.0;
             for (int p = 0; p < np; ++p) {
                 mob[p] /= visc[p];
                 totmob += mob[p];
             }
             std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
             for (int p = 0; p < np; ++p) {
                 prod_resv_phase[p] = (mob[p]/totmob)*flux;
                 for (int q = 0; q < np; ++q) {
                     prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
                 }
             }
             for (int p = 0; p < np; ++p) {
                 produced[p] += prod_surfvol[p];
             }
         }
     }
 }
Пример #3
0
 /// Compute two-phase transport source terms from well terms.
 /// Note: Unlike the incompressible version of this function,
 ///       this version computes surface volume injection rates,
 ///       production rates are still total reservoir volumes.
 /// \param[in]  props         Fluid and rock properties.
 /// \param[in]  wells         Wells data structure.
 /// \param[in]  well_state    Well pressures and fluxes.
 /// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
 ///                           (+) positive  inflow of first (water) phase (surface volume),
 ///                           (-) negative  total outflow of both phases (reservoir volume).
 void computeTransportSource(const BlackoilPropertiesInterface& props,
                             const Wells* wells,
                             const WellState& well_state,
                             std::vector<double>& transport_src)
 {
     int nc = props.numCells();
     transport_src.clear();
     transport_src.resize(nc, 0.0);
     // Well contributions.
     if (wells) {
         const int nw = wells->number_of_wells;
         const int np = wells->number_of_phases;
         if (np != 2) {
             OPM_THROW(std::runtime_error, "computeTransportSource() requires a 2 phase case.");
         }
         std::vector<double> A(np*np);
         for (int w = 0; w < nw; ++w) {
             const double* comp_frac = wells->comp_frac + np*w;
             for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
                 const int perf_cell = wells->well_cells[perf];
                 double perf_rate = well_state.perfRates()[perf];
                 if (perf_rate > 0.0) {
                     // perf_rate is a total inflow reservoir rate, we want a surface water rate.
                     if (wells->type[w] != INJECTOR) {
                         std::cout << "**** Warning: crossflow in well "
                                   << w << " perf " << perf - wells->well_connpos[w]
                                   << " ignored. Reservoir rate was "
                                   << perf_rate/Opm::unit::day << " m^3/day." << std::endl;
                         perf_rate = 0.0;
                     } else {
                         assert(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
                         perf_rate *= comp_frac[0]; // Water reservoir volume rate.
                         props.matrix(1, &well_state.perfPress()[perf], comp_frac, &perf_cell, &A[0], 0);
                         perf_rate *= A[0];         // Water surface volume rate.
                     }
                 }
                 transport_src[perf_cell] += perf_rate;
             }
         }
     }
 }
Пример #4
0
 /// @brief Computes injected and produced volumes of all phases,
 ///        and injected and produced polymer mass - in the compressible case.
 /// Note 1: assumes that only the first phase is injected.
 /// Note 2: assumes that transport has been done with an
 ///         implicit method, i.e. that the current state
 ///         gives the mobilities used for the preceding timestep.
 /// @param[in]  props     fluid and rock properties.
 /// @param[in]  polyprops polymer properties
 /// @param[in]  state     state variables (pressure, fluxes etc.)
 /// @param[in]  transport_src  if < 0: total reservoir volume outflow,
 ///                       if > 0: first phase *surface volume* inflow.
 /// @param[in]  inj_c     injected concentration by cell
 /// @param[in]  dt        timestep used
 /// @param[out] injected  must point to a valid array with P elements,
 ///                       where P = s.size()/transport_src.size().
 /// @param[out] produced  must also point to a valid array with P elements.
 /// @param[out] polyinj   injected mass of polymer
 /// @param[out] polyprod  produced mass of polymer
 void computeInjectedProduced(const BlackoilPropertiesInterface& props,
                              const Opm::PolymerProperties& polyprops,
                              const PolymerBlackoilState& state,
                              const std::vector<double>& transport_src,
                              const std::vector<double>& inj_c,
                              const double dt,
                              double* injected,
                              double* produced,
                              double& polyinj,
                              double& polyprod)
 {
     const int num_cells = transport_src.size();
     if (props.numCells() != num_cells) {
         OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
     }
     const int np = props.numPhases();
     if (int(state.saturation().size()) != num_cells*np) {
         OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
     }
     const std::vector<double>& press = state.pressure();
     const std::vector<double>& temp = state.temperature();
     const std::vector<double>& s = state.saturation();
     const std::vector<double>& z = state.surfacevol();
     const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
     const std::vector<double>& cmax = state.getCellData( state.CMAX );
     std::fill(injected, injected + np, 0.0);
     std::fill(produced, produced + np, 0.0);
     polyinj = 0.0;
     polyprod = 0.0;
     std::vector<double> visc(np);
     std::vector<double> kr_cell(np);
     std::vector<double> mob(np);
     std::vector<double> A(np*np);
     std::vector<double> prod_resv_phase(np);
     std::vector<double> prod_surfvol(np);
     double mc;
     for (int cell = 0; cell < num_cells; ++cell) {
         if (transport_src[cell] > 0.0) {
             // Inflowing transport source is a surface volume flux
             // for the first phase.
             injected[0] += transport_src[cell]*dt;
             polyinj += transport_src[cell]*dt*inj_c[cell];
         } else if (transport_src[cell] < 0.0) {
             // Outflowing transport source is a total reservoir
             // volume flux.
             const double flux = -transport_src[cell]*dt;
             const double* sat = &s[np*cell];
             props.relperm(1, sat, &cell, &kr_cell[0], 0);
             props.viscosity(1, &press[cell], &temp[cell], &z[np*cell], &cell, &visc[0], 0);
             props.matrix(1, &press[cell], &temp[cell], &z[np*cell], &cell, &A[0], 0);
             polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0],
                                           &kr_cell[0], &mob[0]);
             double totmob = 0.0;
             for (int p = 0; p < np; ++p) {
                 totmob += mob[p];
             }
             std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
             for (int p = 0; p < np; ++p) {
                 prod_resv_phase[p] = (mob[p]/totmob)*flux;
                 for (int q = 0; q < np; ++q) {
                     prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
                 }
             }
             for (int p = 0; p < np; ++p) {
                 produced[p] += prod_surfvol[p];
             }
             polyprops.computeMc(c[cell], mc);
             polyprod += produced[0]*mc;
         }
     }
 }