void action(BoundingFrustum const& f,Fn fn)const{ for(auto const& node:nodes){ if(f.Contains(node.bounds)!=DISJOINT) node.action(f,fn); } for(auto const& m:objects){ if(f.Contains(m.bounds)!=DISJOINT) fn(m); } }
void QuadTree::Render(ID3D11DeviceContext* DeviceContext, const XMMATRIX &projection, const XMMATRIX &view) { //Frust på Projection sen multiplicera med inverse proj inverse view iverse world. BoundingFrustum frust;//göra om frustumet till worldspace för boxarna... frust.CreateFromMatrix(frust, projection); frust.Transform(frust, XMMatrixInverse(nullptr, view));//FUNKAR TESTAT! //if (frust.Intersects(box)) //{ // if (!leaf) // { // for (int i = 0; i < 4; i++) // { // Children[i].Render(DeviceContext, projection,view,World); // } // } // else // { // UINT32 vertexSize = sizeof(Vertex); // UINT32 offset = 0; // DeviceContext->IASetIndexBuffer(IndexB, DXGI_FORMAT_R32_UINT, 0); // DeviceContext->IASetVertexBuffers(0, 1, &VertexB, &vertexSize, &offset); // DeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // DeviceContext->DrawIndexed(nrIndices, 0, 0); // } int testValue = frust.Contains(box); switch (testValue) { case 0: break; case 1: if (!leaf) { for (int i = 0; i < 4; i++) { Children[i].Render(DeviceContext, projection,view); } } else { UINT32 vertexSize = sizeof(Vertex); UINT32 offset = 0; DeviceContext->IASetIndexBuffer(IndexB, DXGI_FORMAT_R32_UINT, 0); DeviceContext->IASetVertexBuffers(0, 1, &VertexB, &vertexSize, &offset); DeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); DeviceContext->DrawIndexed(nrIndices, 0, 0); } break; default: if (!leaf) { for (int i = 0; i < 4; i++) { Children[i].Render(DeviceContext, projection, view); } } else { UINT32 vertexSize = sizeof(Vertex); UINT32 offset = 0; DeviceContext->IASetIndexBuffer(IndexB, DXGI_FORMAT_R32_UINT, 0); DeviceContext->IASetVertexBuffers(0, 1, &VertexB, &vertexSize, &offset); DeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); DeviceContext->DrawIndexed(nrIndices, 0, 0); } break; } }
//-------------------------------------------------------------------------------------- // Test collisions between pairs of collision objects using XNACollision functions //-------------------------------------------------------------------------------------- void Collide() { // test collisions between objects and frustum g_SecondarySpheres[0].collision = g_PrimaryFrustum.Contains( g_SecondarySpheres[0].sphere ); g_SecondaryOrientedBoxes[0].collision = g_PrimaryFrustum.Contains( g_SecondaryOrientedBoxes[0].obox ); g_SecondaryAABoxes[0].collision = g_PrimaryFrustum.Contains( g_SecondaryAABoxes[0].aabox ); g_SecondaryTriangles[0].collision = g_PrimaryFrustum.Contains( g_SecondaryTriangles[0].pointa, g_SecondaryTriangles[0].pointb, g_SecondaryTriangles[0].pointc ); // test collisions between objects and aligned box g_SecondarySpheres[1].collision = g_PrimaryAABox.Contains( g_SecondarySpheres[1].sphere ); g_SecondaryOrientedBoxes[1].collision = g_PrimaryAABox.Contains( g_SecondaryOrientedBoxes[1].obox ); g_SecondaryAABoxes[1].collision = g_PrimaryAABox.Contains( g_SecondaryAABoxes[1].aabox ); g_SecondaryTriangles[1].collision = g_PrimaryAABox.Contains( g_SecondaryTriangles[1].pointa, g_SecondaryTriangles[1].pointb, g_SecondaryTriangles[1].pointc ); // test collisions between objects and oriented box g_SecondarySpheres[2].collision = g_PrimaryOrientedBox.Contains( g_SecondarySpheres[2].sphere ); g_SecondaryOrientedBoxes[2].collision = g_PrimaryOrientedBox.Contains( g_SecondaryOrientedBoxes[2].obox ); g_SecondaryAABoxes[2].collision = g_PrimaryOrientedBox.Contains( g_SecondaryAABoxes[2].aabox ); g_SecondaryTriangles[2].collision = g_PrimaryOrientedBox.Contains( g_SecondaryTriangles[2].pointa, g_SecondaryTriangles[2].pointb, g_SecondaryTriangles[2].pointc ); // test collisions between objects and ray float fDistance = -1.0f; float fDist; if ( g_SecondarySpheres[3].sphere.Intersects( g_PrimaryRay.origin, g_PrimaryRay.direction, fDist ) ) { fDistance = fDist; g_SecondarySpheres[3].collision = INTERSECTS; } else g_SecondarySpheres[3].collision = DISJOINT; if ( g_SecondaryOrientedBoxes[3].obox.Intersects( g_PrimaryRay.origin, g_PrimaryRay.direction, fDist ) ) { fDistance = fDist; g_SecondaryOrientedBoxes[3].collision = INTERSECTS; } else g_SecondaryOrientedBoxes[3].collision = DISJOINT; if ( g_SecondaryAABoxes[3].aabox.Intersects( g_PrimaryRay.origin, g_PrimaryRay.direction, fDist ) ) { fDistance = fDist; g_SecondaryAABoxes[3].collision = INTERSECTS; } else g_SecondaryAABoxes[3].collision = DISJOINT; if ( TriangleTests::Intersects( g_PrimaryRay.origin, g_PrimaryRay.direction, g_SecondaryTriangles[3].pointa, g_SecondaryTriangles[3].pointb, g_SecondaryTriangles[3].pointc, fDist ) ) { fDistance = fDist; g_SecondaryTriangles[3].collision = INTERSECTS; } else g_SecondaryTriangles[3].collision = DISJOINT; // If one of the ray intersection tests was successful, fDistance will be positive. // If so, compute the intersection location and store it in g_RayHitResultBox. if( fDistance > 0 ) { // The primary ray's direction is assumed to be normalized. XMVECTOR HitLocation = XMVectorMultiplyAdd( g_PrimaryRay.direction, XMVectorReplicate( fDistance ), g_PrimaryRay.origin ); XMStoreFloat3( &g_RayHitResultBox.aabox.Center, HitLocation ); g_RayHitResultBox.collision = INTERSECTS; } else { g_RayHitResultBox.collision = DISJOINT; } }