void extractBall() { imgTransform(BALL_HUE_U, BALL_HUE_L, BALL_SAT_U, BALL_SAT_L, VAL_U, VAL_L); blobRes = CBlobResult(dst, NULL, 0); blobRes.Filter( blobRes, B_EXCLUDE, CBlobGetArea(), B_LESS, BLOB_SIZE_MIN );// keep blobs larger than BLOB_SIZE_MIN numOfBlobs = blobRes.GetNumBlobs(); cout << numOfBlobs << endl; blobRes.Filter( blobRes, B_EXCLUDE, CBlobGetArea(), B_GREATER, BALL_SIZE_MAX );// keep blobs smaller than BALL_SIZE_MAX numOfBlobs = blobRes.GetNumBlobs(); cout << numOfBlobs << endl; blobRes.Filter( blobRes, B_INCLUDE, CBlobGetCompactness(), B_GREATER, BALL_COMPACTNESS );// keep blobs greater than BALL_COMPACTNESS numOfBlobs = blobRes.GetNumBlobs(); cout << numOfBlobs << endl; for(int i=0; i<numOfBlobs; i++) blobs[i] = blobRes.GetBlob(i); };
void ForegroundDetector::nextIteration(const Mat &img) { if(bgImg.empty()) { return; } Mat absImg = Mat(img.cols, img.rows, img.type()); Mat threshImg = Mat(img.cols, img.rows, img.type()); absdiff(bgImg, img, absImg); threshold(absImg, threshImg, fgThreshold, 255, CV_THRESH_BINARY); IplImage im = (IplImage)threshImg; CBlobResult blobs = CBlobResult(&im, NULL, 0); blobs.Filter(blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, minBlobSize); vector<Rect>* fgList = detectionResult->fgList; fgList->clear(); for(int i = 0; i < blobs.GetNumBlobs(); i++) { CBlob *blob = blobs.GetBlob(i); CvRect rect = blob->GetBoundingBox(); fgList->push_back(rect); } }
void ScheinrieseApp::findBlobs() { CBlobResult blobs; int i; CBlob *currentBlob; IplImage *original, *originalThr; // load an image and threshold it original = cvLoadImage("pic1.png", 0); cvThreshold( original, originalThr, 100, 0, 255, CV_THRESH_BINARY ); // find non-white blobs in thresholded image blobs = CBlobResult( originalThr, NULL, 255 ); // exclude the ones smaller than param2 value blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, param2 ); // get mean gray color of biggest blob CBlob biggestBlob; CBlobGetMean getMeanColor( original ); double meanGray; blobs.GetNth( CBlobGetArea(), 0, biggestBlob ); meanGray = getMeanColor( biggestBlob ); // display filtered blobs cvMerge( originalThr, originalThr, originalThr, NULL, displayedImage ); for (i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); currentBlob->FillBlob( displayedImage, CV_RGB(255,0,0)); } }
CBlob getNearestBlob(CBlobResult blobs, coord coordinate){ int tot = blobs.GetNumBlobs(); CBlob Blob; float distance[10]; // 10 è il numero massimo di blob trovabile in un video float minimum; coord tempCoord; //Questo ciclo for fa la distanza manhattan tra le coordinate passate e tutti i blob catturati e crea il vettore con tutte le distanze. for (int i=0; i<tot; i++){ Blob = blobs.GetBlob(i); tempCoord.set( (int) Blob.MaxX(), (int) Blob.MinX(), (int) Blob.MaxY(), (int) Blob.MinY()); distance[i] = sqrt((double)(tempCoord.cX - coordinate.cX)*(tempCoord.cX - coordinate.cX) + (tempCoord.cY - coordinate.cY)*(tempCoord.cY - coordinate.cY)); } int minDistanceId=0; //Questo ciclo for becca la minima distanza fra tutte quelle calcolate for (int j=0; j<tot; j++){ minimum = min( distance[j], distance[minDistanceId]); if ( distance[j] == minimum ) minDistanceId = j; } //Ottenuta la minima distanza si va a ritornare il Blob corrispondente Blob = blobs.GetBlob( minDistanceId ); //delete[] distance; return Blob; }
CBlobResult computeWhiteMaskOtsu(Mat& imgRGBin, Mat& imgHSVIn, CBlobResult& blobs, int limitRGB, int limitHSV, double RGBratio, double HSVratio, int bmin, int bmax, int i){ waitKey(30); Mat BGRbands[3]; split(imgRGBin,BGRbands); Mat imgHSV; cvtColor(imgHSVIn,imgHSV,CV_BGR2HSV); Mat HSVbands[3]; split(imgHSV,HSVbands); Mat maskHSV, maskRGB, maskT; int otsuTRGB = getThreshVal_Otsu_8u(BGRbands[2]); do{ threshold(BGRbands[2],maskRGB,otsuTRGB,255,THRESH_BINARY); otsuTRGB++; }while(countNonZero(maskRGB)>(RGBratio*limitRGB) & otsuTRGB<=255); int otsuTHSV = getThreshVal_Otsu_8u(HSVbands[1]); do{ threshold(HSVbands[1],maskHSV,otsuTHSV,255,THRESH_BINARY_INV); otsuTHSV--; }while(countNonZero(maskHSV)>(HSVratio*limitHSV) & otsuTHSV>=0); // 0.1 bitwise_or(maskHSV,maskRGB,maskT); int blobSizeBefore = blobs.GetNumBlobs(); blobs = blobs + CBlobResult( maskT ,Mat(),8); blobs.Filter( blobs, B_EXCLUDE, CBlobGetLength(), B_GREATER, bmax ); blobs.Filter( blobs, B_EXCLUDE, CBlobGetLength(), B_LESS, bmin ); int blobSizeAfter = blobs.GetNumBlobs(); Mat newMask(maskT.size(),maskT.type()); newMask.setTo(0); for(;i<blobs.GetNumBlobs();i++){ double area = blobs.GetBlob(i)->Area(); if(area < 5000 && area > 400) blobs.GetBlob(i)->FillBlob(newMask,CV_RGB(255,255,255),0,0,true); } if(countNonZero(maskRGB)>400 && countNonZero(maskHSV)>400 && blobSizeBefore!=blobSizeAfter){ vector<Mat> BGRbands; split(imgRGBin,BGRbands); Mat maskedRGB = applyMaskBandByBand(newMask,BGRbands); bitwise_not(newMask,newMask); split(imgHSVIn,BGRbands); Mat maskedHSV = applyMaskBandByBand(newMask,BGRbands); blobs = computeWhiteMaskOtsu(maskedRGB, maskedHSV, blobs, countNonZero(maskRGB),countNonZero(maskHSV),RGBratio, HSVratio, bmin, bmax, i-1); } return blobs; }
/** - FUNCTION: CBlobResult - FUNCTIONALITY: Copy constructor - PARAMETERS: - source: object to copy - RESULT: - RESTRICTIONS: - AUTHOR: Ricard Borràs - CREATION DATE: 25-05-2005. - MODIFICATION: Date. Author. Description. */ CBlobResult::CBlobResult( const CBlobResult &source ) { m_blobs = blob_vector( source.GetNumBlobs() ); // creem el nou a partir del passat com a paràmetre m_blobs = blob_vector( source.GetNumBlobs() ); // copiem els blobs de l'origen a l'actual blob_vector::const_iterator pBlobsSrc = source.m_blobs.begin(); blob_vector::iterator pBlobsDst = m_blobs.begin(); while( pBlobsSrc != source.m_blobs.end() ) { // no podem cridar a l'operador = ja que blob_vector és un // vector de CBlob*. Per tant, creem un blob nou a partir del // blob original *pBlobsDst = new CBlob(**pBlobsSrc); pBlobsSrc++; pBlobsDst++; } }
void drawInitialBlobs(IplImage * tmp_frame, CBlobResult blobs){ coord drawCoord; for (int i=0; i<blobs.GetNumBlobs();i++){ //!Creating the coordinate struct drawCoord.set( (int) blobs.GetBlob(i).MaxX(), (int) blobs.GetBlob(i).MinX(), (int) blobs.GetBlob(i).MaxY(), (int) blobs.GetBlob(i).MinY()); drawBlob(tmp_frame, drawCoord, 255, 255, 0); } }
/* Fetch a frame (if available) and process it, calling appropriate callbacks when data becomes available. */ void MarkerCapture::tick(){ IplImage *thresh_frame = NULL; CBlobResult blobs; // Acquire the lock, update the current frame. pthread_mutex_lock(&frame_mutex); current_frame = cvCloneImage(cvQueryFrame(camera)); if(color_acquired && current_frame){ thresh_frame = apply_threshold(current_frame, target_color); }else{ // create a suplicant. thresh_frame = cvCreateImage(cvGetSize(current_frame),IPL_DEPTH_8U,1); } pthread_mutex_unlock(&frame_mutex); // Lock released. Done messing with buffers. if(frame_update_callback){ (*frame_update_callback)(this, current_frame, thresh_frame); } if(color_acquired){ blobs = detect_blobs(thresh_frame, CV_BLOB_SIZE_MIN); if(blobs.GetNumBlobs() >= 2){ // need 2 or more blobs for positional fix. MarkerPositionEstimate position; // fetch the two largest blobs, by area. CBlob blob0, blob1; blobs.GetNthBlob(CBlobGetArea(), 0, blob0); blobs.GetNthBlob(CBlobGetArea(), 1, blob1); // perform positional calculations position.distance = distance(blob0, blob1); position.angle = angle(blob0, blob1); position.blob0_center = blob_center(blob0); position.blob1_center = blob_center(blob1); // call the update handler. if(position_update_callback){ (*position_update_callback)(this, position); } } blobs.ClearBlobs(); } pthread_mutex_lock(&frame_mutex); cvReleaseImage(¤t_frame); cvReleaseImage(&thresh_frame); pthread_mutex_unlock(&frame_mutex); int curr_time = clock(); fps = CLOCKS_PER_SEC/(double)(curr_time - time); time = curr_time; }
vector<Bubble> OMRSheet::getBubbles(int xi1, int yi1, int xi2, int yi2){ vector <Bubble> bubbles; cout<<"Bubble area "<<bubbleArea; int minArea = bubbleArea/2, maxArea = bubbleArea*1.5; CBlobResult blobs = ImageUtils::findBlobs(rawSheet, minArea, maxArea, cvRect(xi1, yi1, xi2-xi1, yi2-yi1)); for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { CvRect rect = blobs.GetBlob(i)->GetBoundingBox(); Point centroid = ImageUtils::findCentroid(rawSheet, &rect); Point centroidMM((centroid.x() - x1)/15, (centroid.y() - y1)/15); Bubble bubble(blobs.GetBlob(i), ¢roidMM, ¢roid); bubbles.push_back(bubble); } return bubbles; }
/** - FUNCTION: CBlobResult - FUNCTIONALITY: Copy constructor - PARAMETERS: - source: object to copy - RESULT: - RESTRICTIONS: - AUTHOR: Ricard Borr�s - CREATION DATE: 25-05-2005. - MODIFICATION: Date. Author. Description. */ CBlobResult::CBlobResult( const CBlobResult &source ) { // creem el nou a partir del passat com a par�metre //m_blobs = Blob_vector( source.GetNumBlobs() ); m_blobs.reserve(source.GetNumBlobs()); // copiem els blobs de l'origen a l'actual Blob_vector::const_iterator pBlobsSrc = source.m_blobs.begin(); Blob_vector::iterator pBlobsDst = m_blobs.begin(); while( pBlobsSrc != source.m_blobs.end() ) { // no podem cridar a l'operador = ja que Blob_vector �s un // vector de CBlob*. Per tant, creem un blob nou a partir del // blob original m_blobs.push_back(new CBlob(**pBlobsSrc)); pBlobsSrc++; } }
void extractBots() { //RED TEAM imgTransform(TEAM_R_HUE_U, TEAM_R_HUE_L, TEAM_R_SAT_U, TEAM_R_SAT_L, VAL_U, VAL_L); blobRes = CBlobResult(dst, NULL, 0); blobRes.Filter( blobRes, B_EXCLUDE, CBlobGetArea(), B_LESS, BLOB_SIZE_MIN );// keep blobs larger than BLOB_SIZE_MIN numOfBlobs = blobRes.GetNumBlobs(); cout << numOfBlobs << endl; if(numOfBlobs == 2) { for (int i=0; i<2; i++) blobRes.GetBlob(i) for(int i=0; i<numOfBlobs; i++) blobs[i] = blobRes.GetBlob(i); }; void printBlobs() { CBlobGetXCenter getXC; CBlobGetYCenter getYC; CBlobGetArea getArea; CBlobGetCompactness getCompactness; printf("-----Printng Blobs------\n"); for(int i=0; i<numOfBlobs; i++) { printf("%d\t(%3.2f,%3.2f),%3.2f %3.2f\n", i, getXC(blobs[i]), getYC(blobs[i]), getArea(blobs[i]), getCompactness(blobs[i])); } printf("\n"); cvNamedWindow("old", 1); cvNamedWindow("new", 1); cvMoveWindow("old", 0,0); cvMoveWindow("new", 0,400); cvShowImage("old", img); cvShowImage("new", dst); cvWaitKey(); };
coord extractBlob(CBlobResult blobs, coord selectedCoord){ coord coordinate; CBlob Blob; if ( blobs.GetNumBlobs()==0 ) { coordinate.flag=false; return coordinate; } else { //!Get the blob info Blob = getNearestBlob( blobs, selectedCoord); //!Creating the coordinate struct coordinate.set( (int) Blob.MaxX(), (int) Blob.MinX(), (int) Blob.MaxY(), (int) Blob.MinY()); return coordinate; } }
/** - FUNCTION: + operator - FUNCTIONALITY: Joins the blobs in source with the current ones - PARAMETERS: - source: object to copy the blobs - RESULT: - object with the actual blobs and the source blobs - RESTRICTIONS: - AUTHOR: Ricard Borràs - CREATION DATE: 25-05-2005. - MODIFICATION: Date. Author. Description. */ CBlobResult CBlobResult::operator+( const CBlobResult& source ) { //creem el resultat a partir dels blobs actuals CBlobResult resultat( *this ); // reservem memòria per als nous blobs resultat.m_blobs.resize( resultat.GetNumBlobs() + source.GetNumBlobs() ); // declarem els iterador per recòrrer els blobs d'origen i desti blob_vector::const_iterator pBlobsSrc = source.m_blobs.begin(); blob_vector::iterator pBlobsDst = resultat.m_blobs.end(); // insertem els blobs de l'origen a l'actual while( pBlobsSrc != source.m_blobs.end() ) { pBlobsDst--; *pBlobsDst = new CBlob(**pBlobsSrc); pBlobsSrc++; } return resultat; }
// threshold trackbar callback void on_trackbar( int dummy ) { if(!originalThr) { originalThr = cvCreateImage(cvGetSize(original), IPL_DEPTH_8U,1); } if(!displayedImage) { displayedImage = cvCreateImage(cvGetSize(original), IPL_DEPTH_8U,3); } // threshold input image cvThreshold( original, originalThr, param1, 255, CV_THRESH_BINARY ); // get blobs and filter them using its area CBlobResult blobs; int i; CBlob *currentBlob; // find blobs in image blobs = CBlobResult( originalThr, NULL, 255 ); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, param2 ); // display filtered blobs cvMerge( originalThr, originalThr, originalThr, NULL, displayedImage ); for (i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); currentBlob->FillBlob( displayedImage, CV_RGB(255,0,0)); } cvShowImage( wndname, displayedImage ); }
int main(int argc, char * argv[]) { vector <string> imgNames; vector <string> imgNamesMask; char strFrame[20]; readImageSequenceFiles(imgNames, imgNamesMask); list<TrackLine> trackLineArr; // read org frame and forground for process // you can modify it to read video by add a segment alg for(unsigned int i = 40; i < imgNames.size() - 1; i++) { Mat frame = imread(imgNames[i]); Mat grayImg; cvtColor(frame, grayImg, CV_RGB2GRAY); Mat maskImage = imread(imgNamesMask[i], 0); // get blobs and filter them using its area // use 'cvblobslib' to get the object blobs threshold( maskImage, maskImage, 81, 255, CV_THRESH_BINARY ); medianBlur(maskImage, maskImage, 3); IplImage ipl_maskImage = maskImage; CBlobResult blobs = CBlobResult( &ipl_maskImage, NULL, 0 ); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, 30 ); // filter blobs that area smaller than a certern num list<CBlob *> remBlob; for (int k = 0; k < blobs.GetNumBlobs(); k++) { remBlob.push_back(blobs.GetBlob(k)); } printf("%d\n", trackLineArr.size()); for (list<TrackLine>::iterator trackIter = trackLineArr.begin(); trackIter != trackLineArr.end(); ) { //kf predicition, get kfRect Mat kfPrediction = (trackIter->kf).predict(); Point kfPrePt((int)(kfPrediction.at<float>(0)), (int)(kfPrediction.at<float>(1))); Rect kfRect(kfPrePt.x - (trackIter->box).width / 2, kfPrePt.y - (trackIter->box).height / 2, (trackIter->box).width, (trackIter->box).height); //ct predicition, get ctRect int ctError = 0; Rect ctRect(trackIter->box); float score = (trackIter->ct).predicition(grayImg, ctRect); rectangle(frame, kfRect, Scalar(0, 200, 0)); //green, kf predicition box rectangle(frame, ctRect, Scalar(0, 0, 200)); //red, ct predicition box //union predicit rectangle //if they have no same area, we consider ct is wrong, because kalman is physical movement float areaScale = (float)(sqrt((kfRect & ctRect).area() *1.0 / kfRect.area())); Point movePoint((int)((ctRect.x - kfRect.x) * areaScale), (int)((ctRect.y - kfRect.y) * areaScale)); Rect unionPreRect = kfRect + movePoint; //calc object box Rect objRect; int j = 0; for (list<CBlob *>::iterator blobIter = remBlob.begin(); blobIter != remBlob.end(); ) { Rect detRect((*blobIter)->GetBoundingBox()); float detArea = (float)((*blobIter)->Area()); if ((unionPreRect & detRect).area() > 0) { if (j++ == 0) objRect = detRect; else objRect = objRect | detRect; blobIter = remBlob.erase(blobIter); } else blobIter++; } // let box's area equal float objArea = (float)(objRect.area()); objRect = Rect((int)(objRect.x + objRect.width / 2.0 - unionPreRect.width / 2.0), (int)(objRect.y + objRect.height / 2.0 - unionPreRect.height / 2.0), unionPreRect.width, unionPreRect.height); float detAreaScale = (float)(sqrt(objArea * 1.0 / unionPreRect.area())); if (detAreaScale > 1.0) detAreaScale = 1.0; Point detMovePoint((int)((objRect.x - unionPreRect.x) * detAreaScale), (int)((objRect.y - unionPreRect.y) * detAreaScale)); Rect unionCorrRect = unionPreRect + detMovePoint; // if detect area > 0 if (objArea > 0) { trackIter->box = unionCorrRect; rectangle(frame, unionCorrRect, Scalar(200,0,0), 1); //kf correct Mat_<float> measurement(2,1); measurement(0) = (float)((trackIter->box).x + (trackIter->box).width / 2.0); measurement(1) = (float)((trackIter->box).y + (trackIter->box).height / 2.0); (trackIter->kf).correct(measurement); //ct update (trackIter->ct).update(grayImg, trackIter->box); trackIter++; } // else we beleve tracking miss else { if ((trackIter->miss)++ == 5) trackIter = trackLineArr.erase(trackIter); else trackIter++; } } // !!! // use a sample way to get a new track init object box, i just add all others box toghter and expand it bigger // it's not a good idea when two object appear at the same time will lead only one init box // and, this sample is reasonless. so, i suggest you to use another method to get the init box // here, i just give a tracking alg, with a bad method to get init box, all -_-! // !!! Rect tmprect; int u = 0; for (list<CBlob *>::iterator blobIter = remBlob.begin(); blobIter != remBlob.end(); blobIter++) { if (u++ == 0) tmprect = Rect((*blobIter)->GetBoundingBox()); else tmprect = tmprect | Rect((*blobIter)->GetBoundingBox()); } if (tmprect.area() > 0) tmprect = Rect(tmprect.x - 5, tmprect.y - 8, tmprect.width + 10, tmprect.height + 16); if (tmprect.area() > 0 && tmprect.x != 0 && tmprect.y != 0 && (tmprect.x + tmprect.width) != 319 && (tmprect.y + tmprect.height) != 239) { TrackLine track; track.kf.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); track.kf.measurementMatrix = *(Mat_<float>(2, 4) << 1,0,0,0, 0,1,0,0); setIdentity(track.kf.processNoiseCov, Scalar::all(1e-4)); setIdentity(track.kf.measurementNoiseCov, Scalar::all(1e-1)); setIdentity(track.kf.errorCovPost, Scalar::all(.1)); // kf init track.kf.statePre.at<float>(0) = (float)(tmprect.x + tmprect.width / 2.0); track.kf.statePre.at<float>(1) = (float)(tmprect.y + tmprect.height / 2.0); track.kf.statePre.at<float>(2) = 0; track.kf.statePre.at<float>(3) = 0; track.kf.statePost.at<float>(0) = (float)(tmprect.x + tmprect.width / 2.0); track.kf.statePost.at<float>(1) = (float)(tmprect.y + tmprect.height / 2.0); track.kf.statePost.at<float>(2) = 0; track.kf.statePost.at<float>(3) = 0; // ct init track.ct.init(grayImg, tmprect); rectangle(frame, tmprect, Scalar(255, 0, 0), 2, 7); track.box = tmprect; trackLineArr.push_back(track); } sprintf(strFrame, "#%d ",i) ; putText(frame,strFrame,cvPoint(0,20),2,1,CV_RGB(25,200,25)); char outstr[20]; //if (0) //if ((i >= 450 && i <= 600) || (i >= 930 && i <= 960) || (i >= 1420 && i <= 1450)) { sprintf(outstr, "output\\%d.png", i); string outstring(outstr); imwrite(outstring, frame); sprintf(outstr, "output\\mask_%d.png", i); string outstring2(outstr); imwrite(outstring2, maskImage); } //imshow("ORG", frame); //imshow("mask", maskImage); //waitKey(1); } return 0; }
float thresholdSegmentation(Rect r, ntk::RGBDImage* current_frame, Mat& dst){ Mat depth = current_frame->depth(); Rect& rr = r; Mat depthROI = depth(rr), maskROI; Mat& rDepthROI = depthROI, &rMaskROI = maskROI; double var = 0.3; // maskROI for nonZero values in the Face Region inRange(depthROI, Scalar::all(0.001), Scalar::all(255), maskROI); // Mean depth of Face Region Scalar mFace = cv::mean(rDepthROI, rMaskROI); //mFace[0] = mFace[0] - mFace[0] * var; inRange(depthROI, Scalar::all(0.001), mFace, maskROI); mFace = cv::mean(rDepthROI, rMaskROI); //inRange(depthROI, Scalar::all(0.001), mFace, maskROI); //mFace = cv::mean(rDepthROI, rMaskROI); // Mask for nearer than the mean of face. inRange(depth, Scalar::all(0.001), mFace, dst); Mat rgbImage = current_frame->rgb(); Mat outFrame = cvCreateMat(rgbImage.rows, rgbImage.cols, CV_32FC3); rgbImage.copyTo(outFrame, dst); Mat outFrameROI; outFrameROI = outFrame(rr); //cvCopy(&rgbImage, &outFrame, &dst); //rgbImageROI = rgbImageROI(rr); imshow("ROI", outFrameROI); //imshow("thresholdSeg", dst); // For debug of cvblobslib // Display the color image //imshow("faceRIO", maskROI); imshow("faceRIO", outFrameROI); bool iswrite; const int nchannel = 1; vector<Rect> faces; //iswrite = imwrite("faceROI.png", maskROI); iswrite = imwrite("faceROI.png", outFrameROI); //iswrite = cvSaveImage("faceROI.jpeg", pOutFrame, &nchannel); // ---- blob segmentation on maskROI by using cvblobslib ---- // --- Third Trial --- //visualizeBlobs("faceROI.png", "faceRIO"); // --- First Trial Not Successful --- //Mat maskROIThr=cvCreateMat(maskROI.rows, maskROI.cols, CV_8UC1); //maskROIThr = maskROI; //IplImage imgMaskROIThr = maskROIThr; //IplImage* pImgMaskROIThr = &imgMaskROIThr; //cvThreshold(pImgMaskROIThr, pImgMaskROIThr, 0.1, 255, CV_THRESH_BINARY_INV); // --- Second Trial --- IplImage* original = cvLoadImage("faceROI.png", 0); IplImage* originalThr = cvCreateImage(cvGetSize(original), IPL_DEPTH_8U, 1); IplImage* displayBiggestBlob = cvCreateImage(cvGetSize(original), IPL_DEPTH_8U, 3); CBlobResult blobs; CBlob biggestBlob; //IplImage source = maskROIThr; IplImage* pSource = &source; //blobs = CBlobResult( cvThreshold(original, originalThr, 0.1, 255, CV_THRESH_BINARY_INV); blobs = CBlobResult( originalThr, NULL, 255); printf("%d blobs \n", blobs.GetNumBlobs()); blobs.GetNthBlob(CBlobGetArea(), 0, biggestBlob); biggestBlob.FillBlob(displayBiggestBlob, CV_RGB(255, 0, 0)); // Drawing the eclipse and Rect on the blob Mat mat(displayBiggestBlob); cv::RotatedRect blobEllipseContour; cv::Rect blobRectContour; //RotatedRect blobEllipseContour; blobEllipseContour = biggestBlob.GetEllipse(); blobRectContour = biggestBlob.GetBoundingBox(); //cv::ellipse( cv::ellipse(mat, blobEllipseContour, cv::Scalar(0,255, 0), 3, CV_AA); cv::rectangle(mat, blobRectContour, cv::Scalar(255, 0, 0), 3, CV_AA); //cv::ellipse(mat, blobEllipseContour); float headOritation = blobEllipseContour.angle; if (headOritation <= 180) headOritation = headOritation - 90; else headOritation = headOritation - 270; cv::putText(mat, cv::format("%f degree", headOritation), Point(10,20), 0, 0.5, Scalar(255,0,0,255)); cv::imshow("faceRIO", mat); return(headOritation); }
// A Simple Camera Capture Framework int main() { CvCapture* capture = cvCaptureFromCAM( 0 ); if( !capture ) { fprintf( stderr, "ERROR: capture is NULL \n" ); return -1; } #ifdef HALF_SIZE_CAPTURE cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 352/2); cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 288/2); #endif // Create a window in which the captured images will be presented cvNamedWindow( "Source Image Window", CV_WINDOW_AUTOSIZE ); cvNamedWindow( "Back Projected Image", CV_WINDOW_AUTOSIZE ); cvNamedWindow( "Brightness and Contrast Window", CV_WINDOW_AUTOSIZE ); cvNamedWindow( "Blob Output Window", CV_WINDOW_AUTOSIZE ); cvNamedWindow( "Histogram Window", 0); cvNamedWindow( "Rainbow Window", CV_WINDOW_AUTOSIZE ); // Capture one frame to get image attributes: source_frame = cvQueryFrame( capture ); if( !source_frame ) { fprintf( stderr, "ERROR: frame is null...\n" ); return -1; } cvCreateTrackbar("histogram\nnormalization", "Back Projected Image", &normalization_sum, 6000, NULL); cvCreateTrackbar("brightness", "Brightness and Contrast Window", &_brightness, 200, NULL); cvCreateTrackbar("contrast", "Brightness and Contrast Window", &_contrast, 200, NULL); cvCreateTrackbar("threshold", "Blob Output Window", &blob_extraction_threshold, 255, NULL); cvCreateTrackbar("min blob size", "Blob Output Window", &min_blob_size, 2000, NULL); cvCreateTrackbar("max blob size", "Blob Output Window", &max_blob_size, source_frame->width*source_frame->height/4, NULL); inputImage = cvCreateImage(cvGetSize(source_frame), IPL_DEPTH_8U, 1); histAdjustedImage = cvCreateImage(cvGetSize(source_frame), IPL_DEPTH_8U, 1); outputImage = cvCreateImage(cvGetSize(source_frame), IPL_DEPTH_8U, 3 ); hist_image = cvCreateImage(cvSize(320,200), 8, 1); rainbowImage = cvCreateImage(cvGetSize(source_frame), IPL_DEPTH_8U, 3 ); // object that will contain blobs of inputImage CBlobResult blobs; CBlob my_enumerated_blob; cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX|CV_FONT_ITALIC, hScale, vScale, 0, lineWidth); // Some brightness/contrast stuff: bright_cont_image = cvCloneImage(inputImage); lut_mat = cvCreateMatHeader( 1, 256, CV_8UC1 ); cvSetData( lut_mat, lut, 0 ); while( 1 ) { // Get one frame source_frame = cvQueryFrame( capture ); if( !source_frame ) { fprintf( stderr, "ERROR: frame is null...\n" ); getchar(); break; } cvShowImage( "Source Image Window", source_frame ); // Do not release the frame! cvCvtColor(source_frame, inputImage, CV_RGB2GRAY); // Histogram Stuff! my_hist = cvCreateHist(1, hist_size_array, CV_HIST_ARRAY, ranges, 1); cvCalcHist( &inputImage, my_hist, 0, NULL ); cvNormalizeHist(my_hist, normalization_sum); // NOTE: First argument MUST have an ampersand, or a segmentation fault will result cvCalcBackProject(&inputImage, histAdjustedImage, my_hist); // Histogram Picture int bin_w; float max_value = 0; cvGetMinMaxHistValue( my_hist, 0, &max_value, 0, 0 ); cvScale( my_hist->bins, my_hist->bins, ((double)hist_image->height)/max_value, 0 ); cvSet( hist_image, cvScalarAll(255), 0 ); bin_w = cvRound((double)hist_image->width/hist_size); for(int i = 0; i < hist_size; i++ ) cvRectangle( hist_image, cvPoint(i*bin_w, hist_image->height), cvPoint((i+1)*bin_w, hist_image->height - cvRound(cvGetReal1D(my_hist->bins,i))), cvScalarAll(0), -1, 8, 0 ); cvShowImage( "Histogram Window", hist_image ); cvShowImage("Back Projected Image", histAdjustedImage); // Brightness/contrast loop stuff: int brightness = _brightness - 100; int contrast = _contrast - 100; /* * The algorithm is by Werner D. Streidt * (http://visca.com/ffactory/archives/5-99/msg00021.html) */ if( contrast > 0 ) { double delta = 127.*contrast/100; double a = 255./(255. - delta*2); double b = a*(brightness - delta); for(int i = 0; i < 256; i++ ) { int v = cvRound(a*i + b); if( v < 0 ) v = 0; if( v > 255 ) v = 255; lut[i] = (uchar)v; } } else { double delta = -128.*contrast/100; double a = (256.-delta*2)/255.; double b = a*brightness + delta; for(int i = 0; i < 256; i++ ) { int v = cvRound(a*i + b); if( v < 0 ) v = 0; if( v > 255 ) v = 255; lut[i] = (uchar)v; } } cvLUT( inputImage, bright_cont_image, lut_mat ); cvShowImage( "Brightness and Contrast Window", bright_cont_image); // --------------- // Blob Manipulation Code begins here: // Extract the blobs using a threshold of 100 in the image blobs = CBlobResult( bright_cont_image, NULL, blob_extraction_threshold, true ); // discard the blobs with less area than 5000 pixels // ( the criteria to filter can be any class derived from COperadorBlob ) blobs.Filter( blobs, B_INCLUDE, CBlobGetArea(), B_GREATER_OR_EQUAL, min_blob_size); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_GREATER, max_blob_size); // build an output image equal to the input but with 3 channels (to draw the coloured blobs) cvMerge( bright_cont_image, bright_cont_image, bright_cont_image, NULL, outputImage ); // plot the selected blobs in a output image for (int i=0; i < blobs.GetNumBlobs(); i++) { blobs.GetNthBlob( CBlobGetArea(), i, my_enumerated_blob ); // Color 5/6 of the color wheel (300 degrees) my_enumerated_blob.FillBlob( outputImage, cv_hsv2rgb((float)i/blobs.GetNumBlobs() * 300, 1, 1)); } // END Blob Manipulation Code // --------------- sprintf(str, "Count: %d", blobs.GetNumBlobs()); cvPutText(outputImage, str, cvPoint(50, 25), &font, cvScalar(255,0,255)); cvShowImage("Blob Output Window", outputImage); /* // Rainbow manipulation: for (int i=0; i < CV_CAP_PROP_FRAME_WIDTH; i++) { for (int j=0; j < CV_CAP_PROP_FRAME_HEIGHT; j++) { // This line is not figure out yet... // pixel_color_set = ((uchar*)(rainbowImage->imageData + rainbowImage->widthStep * j))[i * 3] ((uchar*)(rainbowImage->imageData + rainbowImage->widthStep * j))[i * 3] = 30; ((uchar*)(rainbowImage->imageData + rainbowImage->widthStep * j))[i * 3 + 1] = 30; ((uchar*)(rainbowImage->imageData + rainbowImage->widthStep * j))[i * 3 + 2] = 30; } } cvShowImage("Rainbow Window", rainbowImage); */ //If ESC key pressed, Key=0x10001B under OpenCV 0.9.7(linux version), //remove higher bits using AND operator if( (cvWaitKey(10) & 255) == 27 ) break; } cvReleaseImage(&inputImage); cvReleaseImage(&histAdjustedImage); cvReleaseImage(&hist_image); cvReleaseImage(&bright_cont_image); cvReleaseImage(&outputImage); cvReleaseImage(&rainbowImage); // Release the capture device housekeeping cvReleaseCapture( &capture ); cvDestroyAllWindows(); return 0; }
void detect2(Mat img, vector<Mat>& regionsOfInterest,vector<Blob>& blobs){ /* Mat blurred; GaussianBlur(img, blurred, Size(), _SharpSigma, _SharpSigma); Mat lowContrastMask = abs(img - blurred) < _SharpThreshold; Mat sharpened = img*(1+_SharpAmount) + blurred*(-_SharpAmount); img.copyTo(sharpened, lowContrastMask); sharpened.copyTo(img);*/ /*************INIZIALIZZAZIONI**********/ Mat gray; Mat out = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat masked = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat morph = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat bwmorph = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat cont = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat maskHSV = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat whiteMaskMasked = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat whiteMaskOrig = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat Bands[3]; Mat noBackMask = Mat::zeros(Size(WIDTH,HEIGH), CV_8U); Mat kernelEr = getStructuringElement(MORPH_ELLIPSE,Size(5,5)); Mat thMasked; Mat thOrig; Mat bwOrig; Mat bwNoBackMask; Mat kernelOp = getStructuringElement(MORPH_ELLIPSE,Size(13,13)); vector<Mat> BGRbands; split(img,BGRbands); vector< vector<Point> > contours; /***************************************/ /*cvtColor(img,gray,CV_BGR2GRAY); gray = (gray!=0); imshow("gray",gray);*/ /*Rimozione Ombre e Background*/ // masked = applyMaskBandByBand(maskHSV,BGRbands); split(masked,BGRbands); /*Rimozione sfondo e sogliatura per videnziare esclusivamente ciò che è bianco*/ noBackMask = backgroundRemoval(img); masked = applyMaskBandByBand(noBackMask,BGRbands); /* whiteMaskOrig = computeWhiteMaskLight(img); whiteMaskOrig = whiteMaskOrig + computeWhiteMaskShadow(img); whiteMaskMasked = computeWhiteMaskLight(masked); whiteMaskMasked = whiteMaskMasked + computeWhiteMaskShadow(masked); */ CBlobResult blobsRs; blobsRs = computeWhiteMaskOtsu(img, img, blobsRs, img.rows*img.cols, img.rows*img.cols, 0.8, 0.8, 30, 200, 0); //Mat newimg(img.size(),img.type()); whiteMaskOrig.setTo(0); for(int i=0;i<blobsRs.GetNumBlobs();i++){ blobsRs.GetBlob(i)->FillBlob(whiteMaskOrig,CV_RGB(255,255,255),0,0,true); } threshold(masked,whiteMaskMasked,0,255,THRESH_BINARY); cvtColor(whiteMaskMasked,whiteMaskMasked,CV_BGR2GRAY); cout << whiteMaskMasked.type() << " " << whiteMaskOrig.type() << endl; bitwise_or(whiteMaskMasked,whiteMaskOrig,thOrig); masked = applyMaskBandByBand(thOrig,BGRbands); #if DO_MORPH /*Operazioni morfologiche per poter riempire i buchi e rimuovere i bordi frastagliati*/ dilate(masked,morph,kernelEr); erode(morph,morph,kernelEr); erode(morph,morph,kernelOp); dilate(morph,morph,kernelOp); #else morph = masked; #endif /*Ricerca componenti connesse e rimozione in base all'area*/ cvtColor(morph,bwmorph,CV_BGR2GRAY); findContours(bwmorph, contours, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE); vector<double> areas = computeArea(contours); for(int j = areas.size()-1; j>=0; j--){ if(areas.at(j)>MAX_AREA || areas.at(j)<MIN_AREA ) contours.erase(contours.begin()+j); } /*Calcolo Bounding Rectangle a partire dall'immagine con componenti connesse di interesse*/ vector<Rect> boundRect( contours.size() ); vector<vector<Point> > contours_poly( contours.size() ); vector<Point2f>center( contours.size() ); vector<float>radius( contours.size() ); /*Costruzione immagine finale ed estrazione regioni di interesse*/ for (int idx = 0; idx < contours.size(); idx++){ Blob b; b.originalImage = &img; Scalar color(255); approxPolyDP( Mat(contours[idx]), contours_poly[idx], 3, true ); boundRect[idx] = boundingRect( Mat(contours_poly[idx]) ); minEnclosingCircle( (Mat)contours_poly[idx], center[idx], radius[idx] ); // Rect tmpRect(center[idx].x-boundRect[idx].width/2,center[idx].y-boundRect[idx].height/2,boundRect[idx].width,boundRect[idx].height); Rect tmpRect(center[idx].x-radius[idx],center[idx].y-radius[idx],radius[idx]*2,radius[idx]*2); //Rect tmpRect = boundRect[idx]; Rect toPrint; tmpRect += Size(tmpRect.width*RECT_AUGMENT ,tmpRect.height*RECT_AUGMENT); // Aumenta area di RECT_ARGUMENT tmpRect -= Point((tmpRect.width*RECT_AUGMENT)/2 , (tmpRect.height*RECT_AUGMENT)/2 ); // Ricentra il rettangolo drawContours(cont, contours, idx, color, CV_FILLED, 8); if(tmpRect.x>0 && tmpRect.y>0 && tmpRect.x+tmpRect.width < morph.cols && tmpRect.y+tmpRect.height < morph.rows){ //Se il nuovo rettangolo allargato // NON esce fuori dall'immagine, accettalo regionsOfInterest.push_back(masked(tmpRect)); b.cuttedWithBack = img(tmpRect); b.cuttedImages = masked(tmpRect); b.blobsImage = cont(tmpRect); b.rectangles = tmpRect; toPrint = tmpRect; } else{ toPrint = boundRect[idx]; regionsOfInterest.push_back(masked(boundRect[idx])); b.cuttedImages = masked(boundRect[idx]); b.cuttedWithBack = img(boundRect[idx]); b.rectangles = boundRect[idx]; b.blobsImage = cont(boundRect[idx]); } Point centroid = computeCentroid(contours[idx]); b.centroid = centroid; b.area = contourArea(contours[idx]); b.distance = HEIGH - centroid.y; /*rectangle( cont, toPrint.tl(), toPrint.br(), color, 2, 8, 0 ); circle( cont, center[idx], (int)radius[idx], color, 2, 8, 0 );*/ blobs.push_back(b); } //out = out+cont; bitwise_xor(out,cont,out); /*imshow("img",img); imshow("out",out); waitKey(0);*/ }
void iptask::markerDetect(void) { IplImage * frame,*img_hsv,*img_proc,* new1; CvMemStorage * storage = cvCreateMemStorage(0); ros::NodeHandle n; ros::Publisher marker = n.advertise<ikat_ip_data::ip_marker_data>("marker_data",3); ros::Rate looprate(5); int count = 0; CvSeq * contours,*final_contour; int total_con; double maxarea; marker_data * Data =(marker_data *)malloc(sizeof(marker_data)); CBlobResult blobs; CBlob * currentblob; CvPoint2D32f vertices[4]; //CvCapture * img_video=cvCaptureFromAVI("downward-pipe-15_56_17.avi"); frame=cvQueryFrame(img); cvNamedWindow("Image Actual"); cvNamedWindow("final Image"); img_hsv=cvCreateImage(cvGetSize(frame),8,3); img_proc=cvCreateImage(cvGetSize(frame),8,1); new1=cvCreateImage(cvGetSize(frame),8,1); while(ros::ok()) { ikat_ip_data::ip_marker_data msg; IplImage * img_con=cvCreateImage(cvGetSize(frame),8,1); frame=cvQueryFrame(img); if(!frame) break; cvShowImage("Image Actual",frame); cvCvtColor(frame,img_hsv,CV_RGB2HSV); cvInRangeS(img_hsv,cvScalar(100,100,100),cvScalar(120,170,255),img_proc); cvSmooth(img_proc,img_proc,CV_GAUSSIAN,11,11); cvErode(img_proc,img_proc); blobs=CBlobResult(img_proc,NULL,0); blobs.Filter(blobs,B_EXCLUDE,CBlobGetArea(),B_LESS,75); for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { currentblob = blobs.GetBlob(i); currentblob->FillBlob(img_proc,cvScalar(255)); } cvCanny(img_proc,img_proc,10,200); total_con=cvFindContours(img_proc,storage,&contours,sizeof(CvContour),CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); if(contours->total==0) continue; final_contour=cvApproxPoly(contours,sizeof(CvContour),storage,CV_POLY_APPROX_DP,1,1); maxarea=0; cvZero(img_con); CvBox2D rect; while(final_contour) { rect=cvMinAreaRect2(final_contour, storage); if(rect.size.height*rect.size.width>maxarea) { Data->center.x=rect.center.x; Data->center.y=rect.center.y; Data->size.x=rect.size.width; Data->size.y=rect.size.height; Data->angle=rect.angle; maxarea=rect.size.height*rect.size.width; msg.Marker_data[0]=Data->center.x; msg.Marker_data[1]=Data->center.y; msg.Marker_data[2]=Data->angle; } final_contour=final_contour->h_next; } cvBoxPoints(rect,vertices); cvLine(frame,cvPointFrom32f(vertices[0]),cvPointFrom32f(vertices[1]),cvScalarAll(255),2); cvLine(frame,cvPointFrom32f(vertices[1]),cvPointFrom32f(vertices[2]),cvScalarAll(255),2); cvLine(frame,cvPointFrom32f(vertices[2]),cvPointFrom32f(vertices[3]),cvScalarAll(255),2); cvLine(frame,cvPointFrom32f(vertices[3]),cvPointFrom32f(vertices[0]),cvScalarAll(255),2); ROS_INFO("center x :[%f]",msg.Marker_data[0]); ROS_INFO("center y :[%f]",msg.Marker_data[1]); ROS_INFO("angle : [%f]",msg.Marker_data[2]); marker.publish(msg); cvShowImage("final Image",frame); char c=cvWaitKey(33); if (c==27) break; ros::spinOnce(); ++count; looprate.sleep(); } cvDestroyWindow("Image Actual"); cvDestroyWindow("final Image"); free(Data); }
void App::Update(Image &camera) { /*camera=camera.Scale(camera.m_Image->width/2, camera.m_Image->height/2); */ //cvFlip(camera.m_Image, NULL, 0); /////////////////////////////////// // dispatch from input int key=cvWaitKey(10); // usleep(500); static int t=150; static bool viewthresh=false; static bool off=false; static int spirit=0; static int crop_x=0; static int crop_y=0; static int crop_w=camera.m_Image->width; static int crop_h=camera.m_Image->height; switch (key) { case 't': viewthresh=!viewthresh; break; case 'q': t--; break; case 'w': t++; break; case 'e': t-=20; break; case 'r': t+=20; break; case 'o': off=!off; break; case 'p': spirit++; break; case 'z': crop_x+=10; break; case 'x': crop_x-=10; break; case 'c': crop_y+=10; break; case 'v': crop_y-=10; break; case 'b': crop_w+=10; break; case 'n': crop_w-=10; break; case 'm': crop_h+=10; break; case ',': crop_h-=10; break; } if (crop_x<0) crop_x=0; if (crop_x>=camera.m_Image->width) crop_x=camera.m_Image->width-1; if (crop_y<0) crop_x=0; if (crop_y>=camera.m_Image->height) crop_y=camera.m_Image->height-1; if (crop_w+crop_x>camera.m_Image->width) { crop_w=camera.m_Image->width-crop_x; } if (crop_h+crop_y>camera.m_Image->height) { crop_h=camera.m_Image->height-crop_y; } if (off) { sleep(1); cerr<<"off..."<<endl; return; } Image thresh=camera.RGB2GRAY().SubImage(crop_x,crop_y,crop_w,crop_h); cvThreshold(thresh.m_Image,thresh.m_Image,t,255,CV_THRESH_BINARY); // copy the threshold into a colour image Image tofill=thresh.GRAY2RGB(); cvFloodFill(tofill.m_Image,cvPoint(camera.m_Image->width/2, camera.m_Image->height/2), CV_RGB(0,255,0),cvScalar(0),cvScalar(255)); CBlobResult blobs; blobs = CBlobResult( thresh.m_Image, NULL, 255 ); // exclude the ones smaller than param2 value blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, 10); CBlob *currentBlob; Image *out=NULL; if (key=='s') { // add the alpha channel Image src=camera.SubImage(crop_x,crop_y,crop_w,crop_h); out = new Image(src.m_Image->width, src.m_Image->height, 8, 4); for(int y=0; y<src.m_Image->height; y++) { for(int x=0; x<src.m_Image->width; x++) { CvScalar col = cvGet2D(src.m_Image,y,x); CvScalar alpha = cvGet2D(tofill.m_Image,y,x); if (alpha.val[0]==0 && alpha.val[1]==255 && alpha.val[2]==0) col.val[3]=0; else col.val[3]=255; cvSet2D(out->m_Image,y,x,col); } } } if (key=='s') { cerr<<"deleting old images in islands/"<<endl; int r=system("rm islands/*"); } list<CvRect> allrects; for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); allrects.push_back(currentBlob->GetBoundingBox()); } list<CvRect> filteredrects=allrects; /* for (list<CvRect>::iterator i=allrects.begin(); i!=allrects.end(); ++i) { bool in=false; for (list<CvRect>::iterator j=allrects.begin(); j!=allrects.end(); ++j) { if (Inside(*i,*j)) in=true; } if (!in) filteredrects.push_back(*i); }*/ unsigned int instance = rand(); unsigned int count=0; for (list<CvRect>::iterator i=filteredrects.begin(); i!=filteredrects.end(); ++i) { CvRect rect = *i; if (key=='s') { Image island = out->SubImage(rect.x,rect.y, rect.width,rect.height); char buf[256]; sprintf(buf,"islands/island-%d-%d-%d.png",count, rect.x+rect.width/2, rect.y+rect.height/2); cerr<<"saving "<<buf<<endl; island.Save(buf); sprintf(buf,"dump/island-%d-%d-%d-%d.png", instance, count, rect.x+rect.width/2, rect.y+rect.height/2); cerr<<"saving "<<buf<<endl; island.Save(buf); } else { cvRectangle(camera.m_Image, cvPoint(crop_x+rect.x,crop_y+rect.y), cvPoint(crop_x+rect.x+rect.width, crop_y+rect.y+rect.height), colors[1]); } count++; } if (key=='s') { cerr<<"copying images to server"<<endl; //int r=system("scp -r islands [email protected]:/home/garden/GerminationX/oak/"); string path("/home/dave/code/lirec/scenarios/GerminationX/oak/public/"); path+=string(spirits[spirit%3]); string command=string("rm ")+path+string("/*.*"); int r=system(command.c_str()); string command2=string("cp islands/* ")+path; r=system(command2.c_str()); //cerr<<"finished copying...("<<r<<")"<<endl; } if (viewthresh) camera=tofill; char buf[256]; sprintf(buf,"spirit: %s thresh: %d", spirits[spirit%3], t); cvPutText(camera.m_Image, buf, cvPoint(10,20), &m_Font, colors[0]); cvRectangle(camera.m_Image, cvPoint(crop_x,crop_y), cvPoint(crop_x+crop_w,crop_y+crop_h), colors[2]); if (out!=NULL) delete out; }
// starts the auto targeting sequence void MainWindow::on_startstopbutton_clicked() { shootingstopped=false; QImage* currimage=getQImage(); n=currimage->width(); k=currimage->height(); IplImage* curriplimage=Qimage2IplImage(&currimage->convertToFormat(QImage::Format_RGB32)); IplImage* threshedimage=threshimage(curriplimage); CBlobResult blobs; CBlob* currentblob; blobs=CBlobResult(threshedimage,NULL,0); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, 150 ); int j=blobs.GetNumBlobs(); if(j==0) { QMessageBox::information(this,"No Targets","No Targets Found!"); cvReleaseImage(&threshedimage); cvReleaseImage(&curriplimage); return; } CBlobGetXCenter XCenter; CBlobGetYCenter YCenter; for(int i=0;i<blobs.GetNumBlobs();i++) { tmptargetcenter=new targetcenter; currentblob=blobs.GetBlob(i); tmptargetcenter->x=XCenter(*currentblob); tmptargetcenter->y=YCenter(*currentblob); getangles(tmptargetcenter); targets.append(tmptargetcenter); } checkformissiles(); ui->targetcountdisplay->display(targets.size()); setupautobuttons(); qApp->processEvents(); ui->timeNumber->display(0); timeshooting.start(100); turr->initAngle(); if(shootingstopped) { timeshooting.stop(); targets.clear(); return; } foreach(targetcenter* target,targets) { checkformissiles(); qApp->processEvents(); turr->setAngle(target->beta,target->betav); ui->shotcountdisplay->display(turr->currentmissilecount()); if(shootingstopped) { timeshooting.stop(); targets.clear(); delete target; return; } ui->targetcountdisplay->display(ui->targetcountdisplay->value()-1); qApp->processEvents(); delete target; }
int main(int argc, char *argv[]) { CvCapture* capture = cvCreateFileCapture( "recording_01.avi"); handOrientation rightOrientationLast = NONE, leftOrientationLast = NONE; handOrientation rightOrientationCur = NONE, leftOrientationCur = NONE; //cvNamedWindow("Input Image", CV_WINDOW_AUTOSIZE); //cvNamedWindow("Skin Pixels", CV_WINDOW_AUTOSIZE); cvNamedWindow("Skin Blobs", CV_WINDOW_AUTOSIZE); while(1){ Mat imageBGR = cvQueryFrame(capture); if(imageBGR.empty())break; //imshow("Input Image", imageBGR); // Convert the image to HSV colors. Mat imageHSV = Mat(imageBGR.size(), CV_8UC3); // Full HSV color image. cvtColor(imageBGR, imageHSV, CV_BGR2HSV); // Convert from a BGR to an HSV image. std::vector<Mat> channels(3); split(imageHSV, channels); Mat planeH = channels[0]; Mat planeS = channels[1]; Mat planeV = channels[2]; // Detect which pixels in each of the H, S and V channels are probably skin pixels. threshold(channels[0], channels[0], 150, UCHAR_MAX, CV_THRESH_BINARY_INV);//18 threshold(channels[1], channels[1], 60, UCHAR_MAX, CV_THRESH_BINARY);//50 threshold(channels[2], channels[2], 170, UCHAR_MAX, CV_THRESH_BINARY);//80 // Combine all 3 thresholded color components, so that an output pixel will only // be white if the H, S and V pixels were also white. Mat imageSkinPixels = Mat( imageBGR.size(), CV_8UC3); // Greyscale output image. bitwise_and(channels[0], channels[1], imageSkinPixels); // imageSkin = H {BITWISE_AND} S. bitwise_and(imageSkinPixels, channels[2], imageSkinPixels); // imageSkin = H {BITWISE_AND} S {BITWISE_AND} V. // Show the output image on the screen. //imshow("Skin Pixels", imageSkinPixels); IplImage ipl_imageSkinPixels = imageSkinPixels; // Find blobs in the image. CBlobResult blobs; blobs = CBlobResult(&ipl_imageSkinPixels, NULL, 0); // Use a black background color. // Ignore the blobs whose area is less than minArea. blobs.Filter(blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, minBlobArea); srand (time(NULL)); // Show the large blobs. IplImage* imageSkinBlobs = cvCreateImage(imageBGR.size(), 8, 3); //Colored Output//,1); Greyscale output image. for (int i = 0; i < blobs.GetNumBlobs(); i++) { CBlob *currentBlob = blobs.GetBlob(i); currentBlob->FillBlob(imageSkinBlobs, CV_RGB(rand()%255,rand()%255,rand()%255)); // Draw the large blobs as white. cvDrawRect(imageSkinBlobs, cvPoint(currentBlob->GetBoundingBox().x,currentBlob->GetBoundingBox().y), cvPoint(currentBlob->GetBoundingBox().x + currentBlob->GetBoundingBox().width,currentBlob->GetBoundingBox().y + currentBlob->GetBoundingBox().height), cvScalar(0,0,255), 2);//Draw Bounding Boxes } cvShowImage("Skin Blobs", imageSkinBlobs); //Gestures //std::cout << "Number of Blobs: "<< blobs.GetNumBlobs() <<endl; if(blobs.GetNumBlobs() == 0){ //picture empty }else if(blobs.GetNumBlobs() == 1) { //head detected }else if(blobs.GetNumBlobs() == 2 || blobs.GetNumBlobs() == 3){ //head + one hand || head + two hands CvRect rect[3]; int indexHead = -1, indexHandLeft = -1, indexHandRight = -1; //Get Bounding Boxes for(int i = 0; i< blobs.GetNumBlobs(); i++){ rect[i] = blobs.GetBlob(i)->GetBoundingBox(); } //Detect Head and Hand indexes if(blobs.GetNumBlobs() == 2){ int indexHand = -1; if(getCenterPoint(rect[0]).y < getCenterPoint(rect[1]).y){ indexHead = 0; indexHand = 1; }else{ indexHead = 1; indexHand = 0; } if(getHandside(rect[indexHead], rect[indexHand]) == LEFT){ indexHandLeft = 1; indexHandRight = -1; }else{ // right hand indexHandLeft = -1; indexHandRight = 1; } }else{ //two hands int indexHand1 = -1; int indexHand2 = -1; if(getCenterPoint(rect[0]).y < getCenterPoint(rect[1]).y && getCenterPoint(rect[0]).y < getCenterPoint(rect[2]).y){ indexHead = 0; indexHand1 = 1; indexHand2 = 2; }else if(getCenterPoint(rect[1]).y < getCenterPoint(rect[0]).y && getCenterPoint(rect[1]).y < getCenterPoint(rect[2]).y){ indexHead = 1; indexHand1 = 0; indexHand2 = 2; }else{ indexHead = 2; indexHand1 = 0; indexHand2 = 1; } if(getHandside(rect[indexHead], rect[indexHand1]) == LEFT){ indexHandLeft = indexHand1; indexHandRight = indexHand2; }else{ indexHandLeft = indexHand2; indexHandRight = indexHand1; } } // follow the right hand if(indexHandRight > 0) { //std::cout << "right hand deteced" <<endl; if(isMoving(handRight)) { std::cout << "hand moving" <<endl; handRight.centerPrev = handRight.centerCurr; handRight.centerCurr = getCenterPoint(rect[indexHandRight]); } else { std::cout << "hand not moving" <<endl; if(handRight.centerInit.y != 0 && abs(handRight.centerInit.y - handRight.centerCurr.y) > 20) { if(handRight.centerInit.y < handRight.centerCurr.y) { // hand moved down std::cout << " hand moved down" <<endl; } else { // hand moved up std::cout << " hand moved up" <<endl; } } handRight.centerInit = getCenterPoint(rect[indexHandRight]); handRight.centerPrev = handRight.centerCurr; handRight.centerCurr = getCenterPoint(rect[indexHandRight]); } } //Get Orientations from Hand rects leftOrientationCur = (indexHandLeft != -1)?getOrientationOfRect(rect[indexHandLeft]):NONE; rightOrientationCur = (indexHandRight != -1)?getOrientationOfRect(rect[indexHandRight]):NONE; //Check Change of Left hand /*switch(detectHandStateChange(leftOrientationLast, leftOrientationCur)){ case PORTRAIT_TO_LANDSCAPE: handleGestures(LEFT_FLIP_DOWN); break; case LANDSCAPE_TO_PORTRAIT: handleGestures(LEFT_FLIP_UP); break; case NOCHANGE: default: break; } //Check Change of Right hand switch(detectHandStateChange(rightOrientationLast, rightOrientationCur)){ case PORTRAIT_TO_LANDSCAPE: handleGestures(RIGHT_FLIP_DOWN); break; case LANDSCAPE_TO_PORTRAIT: handleGestures(RIGHT_FLIP_UP); break; case NOCHANGE: default: break; }*/ }else if(blobs.GetNumBlobs() > 3){ //too much information cout<<"too much information"<<endl; } leftOrientationLast = leftOrientationCur; rightOrientationLast = rightOrientationCur; // Free all the resources. /*cvReleaseImage( &imageBGR ); cvReleaseImage( &imageHSV ); cvReleaseImage( &planeH ); cvReleaseImage( &planeS ); cvReleaseImage( &planeV ); cvReleaseImage( &imageSkinPixels ); cvReleaseImage( &imageSkinBlobs );*/ //if ESC is pressed then exit loop cvWaitKey(33); } cvWaitKey(0); return 0; }
//============================================================================== void PanTiltCameraClass::blobTracking(IplImage* hsv_mask, IplImage* pFour, IplImage* pImg) { //--- Get blobs and filter them using the blob area CBlobResult blobs; CBlob *currentBlob; //--- Create a thresholded image and display image -------------------- //--- Creates binary image IplImage* originalThr = cvCreateImage(cvGetSize(hsv_mask), IPL_DEPTH_8U,1); //--- Create 3-channel image IplImage* display = cvCreateImage(cvGetSize(hsv_mask),IPL_DEPTH_8U,3); //--- Copies the original cvMerge( hsv_mask, hsv_mask, hsv_mask, NULL, display ); //--- Makes a copy for processing cvCopy(hsv_mask,originalThr); //--- Find blobs in image --------------------------------------------- int blobThreshold = 0; bool blobFindMoments = true; blobs = CBlobResult( originalThr, originalThr, blobThreshold, blobFindMoments); //--- filters blobs according to size and radius constraints blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, this->minBlobSize ); //--- display filtered blobs ------------------------------------------ //--- copies the original in (for background) cvMerge( originalThr, originalThr, originalThr, NULL, display ); CvPoint pts[this->NUMBER_OF_CIRCLES]; //--- This sequence marks all the blobs for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); currentBlob->FillBlob( display, CV_RGB(0,0,255)); //--- Get blobs centerpoint CvPoint bcg; bcg.x = (int)(currentBlob->MinX()+((currentBlob->MaxX()-currentBlob->MinX())/2)); bcg.y = (int)(currentBlob->MinY()+((currentBlob->MaxY()-currentBlob->MinY())/2)); //--- Print the CG on the picture char blobtext[40]; for(int k=0;k<this->NUMBER_OF_CIRCLES;k++) { sprintf(blobtext,"%d",k+1); TargetReticle(display,&pts[k],blobtext,6,CV_RGB(255,0,0)); }//for }//for each blob //--- Set the ROI in the pFour image cvSetImageROI(pFour,cvRect(pImg->width,pImg->height+80,pImg->width,pImg->height)); cvCopy(display,pFour); //Reset region of interest cvResetImageROI(display); //Clean up cvReleaseImage( &originalThr ); cvReleaseImage( &display); }
int main(){ Scalar robotColor = CV_RGB(255, 0, 0); Scalar rightColor = CV_RGB(0, 255, 0); Scalar leftColor = CV_RGB(0, 0, 255); Scalar robotColor_2 = CV_RGB(0, 255, 255); Scalar rightColor_2 = CV_RGB(255, 0, 255); Scalar leftColor_2 = CV_RGB(255, 255, 0); int lowH = 0; int highH = 14; int top_cut = 120; int bot_cut = 70; int lowV = 200; int type = 0; int ticks = 0; int nb_errors = 0; int len = 150; int trace = 25; int sensitivity = 100; int area = 3000; int flip = 0; //set to 0 if no flips are needed, 1 for y axis, 2 for x axis and 3 for both namedWindow("My Window", 1); createTrackbar("lowH", "My Window", &lowH, 180); createTrackbar("highH", "My Window", &highH, 180); createTrackbar("top_cut", "My Window", &top_cut, 255); createTrackbar("bot_cut", "My Window", &bot_cut, 255); createTrackbar("lowV", "My Window", &lowV, 255); createTrackbar("LEN", "My Window", &len, 300); createTrackbar("TRACE", "My Window", &trace, 100); createTrackbar("SENSITIVITY", "My Window", &sensitivity, 200); createTrackbar("AREA", "My Window", &area, 7000); createTrackbar("FLIP", "My Window", &flip, 3); moveWindow("My Window", 0, 0); namedWindow("kalman", 1); moveWindow("kalman", 500, 0); namedWindow("Blobs Image", 1); moveWindow("Blobs Image", 500, 300); namedWindow("frame", 1); moveWindow("frame", 0, 500); namedWindow("test", WINDOW_AUTOSIZE); moveWindow("test", 0, 500); namedWindow("white", WINDOW_AUTOSIZE); moveWindow("white", 0, 500); //file of video input string filename = "testVideo_5.webm"; ofstream logs; ofstream stats; stats.open("stats.txt"); logs.open("logs.csv"); logs << "Left_x,Left_y,Left_holds,Right_x,Right_y,Right_holds,confirmed" << endl; Point center_window = Point(WIDTH/2, (HEIGHT - top_cut - bot_cut)/2); Point center_left = Point(WIDTH/4, .5*max(10, HEIGHT - top_cut - bot_cut)); Point center_right = Point(3*WIDTH/4, .5*max(10, HEIGHT - top_cut - bot_cut)); // initialize the kalman filters KalmanFilter KF_left(4, 2, 0); KalmanFilter KF_right(4, 2, 0); Mat_<float> measurement_left(2,1); measurement_left.setTo(Scalar(0)); Mat_<float> measurement_right(2,1); measurement_right.setTo(Scalar(0)); initialize_kalman(&KF_left, center_left); initialize_kalman(&KF_right, center_right); VideoCapture cap(0); // VideoCapture cap(filename); Mat kf_img(HEIGHT - top_cut - bot_cut, WIDTH, CV_8UC3); vector<Point> mousev_left,kalmanv_left; mousev_left.clear(); kalmanv_left.clear(); vector<Point> mousev_right,kalmanv_right; mousev_right.clear(); kalmanv_right.clear(); int counter = 0; int nb_confirmed = 0; int nb_total = 0; double average_left = 0; double average_right = 0; double error_left = 0; double error_right = 0; double prev_dist = norm(center_left - center_right); double new_dist = prev_dist; bool left_valid = false; bool right_valid = true; Mat temp = Mat::zeros(100,400, CV_8UC3); putText(temp, "Press any key to start", Point(50,50), FONT_HERSHEY_SIMPLEX, .5, Scalar(255,255,255)); putText(temp, "and ESC to end", Point(50, 75), FONT_HERSHEY_SIMPLEX, .5, Scalar(255,255,255)); imshow("Blobs Image", temp); waitKey(-1); int key; bool eof = false; for(;;){ Mat frame; Mat prediction_left = KF_left.predict(); Point new_left(prediction_left.at<float>(0), prediction_left.at<float>(1)); measurement_left(0) = center_left.x; measurement_left(1) = center_left.y; Mat estimated_left = KF_left.correct(measurement_left); Point statePt_left(estimated_left.at<float>(0),estimated_left.at<float>(1)); Point measPt_left(measurement_left(0),measurement_left(1)); Mat prediction_right = KF_right.predict(); Point new_right(prediction_right.at<float>(0), prediction_right.at<float>(1)); measurement_right(0) = center_right.x; measurement_right(1) = center_right.y; Mat estimated_right = KF_right.correct(measurement_right); Point statePt_right(estimated_right.at<float>(0),estimated_right.at<float>(1)); Point measPt_right(measurement_right(0),measurement_right(1)); ticks ++; error_left = norm(statePt_left - measPt_left); average_left = ((average_left * (ticks - 1)) + error_left) / ticks; error_right = norm(statePt_right - measPt_right); average_right = ((average_right * (ticks - 1)) + error_right) / ticks; imshow("kalman", kf_img); // waitKey(-1); kf_img = Scalar::all(0); mousev_left.push_back(measPt_left); kalmanv_left.push_back(statePt_left); circle(kf_img, statePt_left, 1, Scalar(255,255,255), -1); circle(kf_img, measPt_left, 1, Scalar(0,0,255), -1); int nb_mousev_left = mousev_left.size() - 1; int nb_kalmanv_left = mousev_left.size() - 1; int nb_mousev_right = mousev_left.size() - 1; int nb_kalmanv_right = mousev_left.size() - 1; for(int i = max(0, nb_mousev_left - trace); i< nb_mousev_left; i++){ line(kf_img, mousev_left[i], mousev_left[i+1], Scalar(255,255,0), 1); } for(int i = max(0, nb_kalmanv_left - trace); i< nb_kalmanv_left; i++){ line(kf_img, kalmanv_left[i], kalmanv_left[i+1], Scalar(0,0,255), 1); } mousev_right.push_back(measPt_right); kalmanv_right.push_back(statePt_right); circle(kf_img, statePt_right, 1, Scalar(255,255,255), -1); circle(kf_img, measPt_right, 1, Scalar(0,0,255), -1); for(int i = max(0, nb_mousev_right - trace); i< nb_mousev_right; i++){ line(kf_img, mousev_right[i], mousev_right[i+1], Scalar(0,255,0), 1); } for(int i = max(0, nb_kalmanv_right - trace); i< nb_kalmanv_right; i++){ line(kf_img, kalmanv_right[i], kalmanv_right[i+1], Scalar(255,0,255), 1); } Rect border(0, top_cut, WIDTH, max(10, HEIGHT - top_cut - bot_cut)); cap >> frame; if(!frame.empty()){ Mat image; int flip_type = 1; switch (flip) { case 0: break; case 1: break; case 2: flip_type = 0; break; case 3: flip_type = -1; break; } if(flip) cv::flip(frame, frame, flip_type); resize(frame, frame, Size(WIDTH, HEIGHT)); image = frame(border); imshow("frame", image); //performs the skin detection Mat converted_skin; cvtColor(image, converted_skin, CV_BGR2HSV); Mat skin_masked; inRange(converted_skin, Scalar(min(lowH, highH), 48, 80),Scalar(max(lowH, highH), 255, 255), skin_masked); imshow("test", skin_masked); //performs the robot detection Mat converted_white, white_masked, lights_masked; cvtColor(image, converted_white, CV_BGR2GRAY); inRange(converted_skin, Scalar(0, 0, 245), Scalar(180, 255, 255), lights_masked); threshold(converted_white, white_masked, lowV, 255, type); bitwise_or(white_masked, lights_masked, white_masked); imshow("white", white_masked); Mat copy(converted_skin.size(), converted_skin.type());// = converted.clone(); //detects hands as blobs CBlobResult blobs; IplImage temp = (IplImage)skin_masked; blobs = CBlobResult(&temp,NULL,1); blobs = CBlobResult(skin_masked,Mat(),NUMCORES); int numBlobs = blobs.GetNumBlobs(); if(0 == numBlobs){ cout << "can't find blobs!" << endl; continue; } // detects robot as a blob CBlobResult robot_blobs; IplImage robot_temp = (IplImage) white_masked; robot_blobs = CBlobResult(&robot_temp, NULL, 1); robot_blobs = CBlobResult(white_masked, Mat(), NUMCORES); if(0 == robot_blobs.GetNumBlobs()){ cout << "can't find robot_blobs!" << endl; continue; } CBlob *curblob; CBlob* blob_1; CBlob* blob_2; CBlob* leftBlob; CBlob* rightBlob; CBlob* robotBlob; copy.setTo(Vec3b(0,0,0)); // chooses the two largest blobs for the hands Point center_1, center_2; int max_1 = 0; int max_2 = 0; int maxArea_1 = 0; int maxArea_2 = 0; for(int i=0;i<numBlobs;i++){ int area = blobs.GetBlob(i)->Area(); if(area > maxArea_1){ maxArea_2 = maxArea_1; maxArea_1 = area; max_2 = max_1; max_1 = i; } else if(area > maxArea_2){ maxArea_2 = area; max_2 = i; } } int i_1 = max_1; int i_2 = max_2; double area_left, area_right; Rect rect_1; Rect rect_2; //determines which hand is left/right blob_1 = blobs.GetBlob(i_1); blob_2 = blobs.GetBlob(i_2); center_1 = blob_1->getCenter(); center_2 = blob_2->getCenter(); bool left_is_1 = (center_1.x < center_2.x)? true : false; leftBlob = (left_is_1)? blob_1 : blob_2; rightBlob = (left_is_1)? blob_2 : blob_1; center_left = leftBlob->getCenter(); center_right = rightBlob->getCenter(); //determine the number of valid hands //validity is decided by whether or not the hand followed a logical movement, //and if the area of the blob is large enough to be accepted int valids = 0; rect_1 = leftBlob->GetBoundingBox(); rectangle(copy, rect_1.tl(), rect_1.br(), leftColor_2, 5); error_left = norm(statePt_left - center_left); area_left = leftBlob->Area(); left_valid = error_left < sensitivity && area_left > area; if(left_valid){ leftBlob->FillBlob(copy,leftColor, true); valids ++; } circle(copy, center_left, 5, leftColor_2, -1); rect_2 = rightBlob->GetBoundingBox(); rectangle(copy, rect_2.tl(), rect_2.br(), rightColor_2, 5); error_right = norm(statePt_right - center_right); area_right = rightBlob->Area(); right_valid = error_right < sensitivity && area_right > area; if(right_valid){ rightBlob->FillBlob(copy,rightColor, true); valids ++; } circle(copy, center_right, 5, rightColor_2, -1); //finds the blob representing the robot //we could add a restriction to only choose a blob between the two hands //in terms of x-coordinate //a Kalman check can easily be done for the robot Point robot_center; maxArea_1 = 0; max_1 = 0; numBlobs = robot_blobs.GetNumBlobs(); if(0 < numBlobs){ for(int i=0;i<numBlobs;i++){ curblob = robot_blobs.GetBlob(i); robot_center = curblob->getCenter(); double dist_1 = norm(center_1 - robot_center); double dist_2 = norm(center_2 - robot_center); if(dist_1 < len || dist_2 < len){ double area = robot_blobs.GetBlob(i)->Area(); if(area > maxArea_1){ max_1 = i; maxArea_1 = area; } } } int i_3 = max_1; curblob = robot_blobs.GetBlob(i_3); curblob->FillBlob(copy,robotColor, true); robot_center = curblob->getCenter(); circle(copy, robot_center, 5, robotColor_2, -1); Rect rect_3 = curblob->GetBoundingBox(); rectangle(copy, rect_3.tl(), rect_3.br(), robotColor_2, 5); // determines which hand is controlling the robot // by cheching the position of the 3 blobs // an additional check could be done by verifying if //the center of the robot is moving in the same direction //as the center of the hand moving it bool is_left = false; bool is_right = false; bool confirmed = false; double dist_left = norm(center_left - robot_center); double dist_right = norm(center_right - robot_center); double dist_both = norm(center_left - center_right); Point robot_tl = rect_3.tl(); Point robot_br = rect_3.br(); int left_count = 0; int right_count = 0; if(rect_1.contains(robot_tl)) left_count++; if(rect_1.contains(robot_br)) left_count++; if(rect_1.contains(robot_center)) left_count++; if(rect_2.contains(robot_tl)) right_count++; if(rect_2.contains(robot_br)) right_count++; if(rect_2.contains(robot_center)) right_count++; switch(valids){ case 0: break; case 1:{ int area_sum = area_left + area_right; if(dist_left > 2* dist_right || dist_right > 2*dist_left){ if(area_sum > 2 * area && (area_left > 2*area_right || area_right > 2*area_left) && ((left_valid && left_count > 0)||(right_valid && right_count > 0))){ is_left = true; is_right = true; if(left_count > 2 || right_count > 2) confirmed = true; } } if(left_valid && left_count > 1) { is_left = true; if(left_count > 2) confirmed = true; } if(right_valid && right_count > 1) { is_right = true; if(right_count > 2) confirmed = true; } //if just one hand is on screen if(area_right < area/2){ if(center_left.x > robot_center.x){ is_left = true; } else{ is_right = true; } } else if (area_left < area/2){ if(center_right.x < robot_center.x){ is_right = true; } else{ is_left = true; } } break;} case 2:{ int moreLeft = left_count - right_count; int moreRight = right_count - left_count; int countSum = left_count + right_count; switch (countSum) { case 3:{ switch (left_count) { case 3: is_left = true; confirmed = true; break; case 2: case 1: is_left = true; is_right = true; confirmed= true; break; case 0: is_right = true; confirmed = true; break; } } case 2:{ switch (left_count) { case 2: is_left = true; confirmed = true; break; case 1: is_left = true; is_right = true; break; case 0: is_right = true; confirmed = true; break; } } case 1:{ switch (left_count) { case 1: is_left = true; break; case 0: is_right = true; break; } } case 0:{ break; } } break;} } bool found = false; for(size_t i = robot_tl.x; i<= robot_br.x && !found; i++){ for(size_t j = robot_tl.y; j<= robot_br.y && !found; j++){ int color1 = 0; int color2 = 255; Vec3b colour = copy.at<Vec3b>(Point(i, j)); if(colour[1] == color1 && colour[0] == color2){ found = true; is_left = true; } if(colour[1] == color2 && colour[0] == color1){ found = true; is_right = true; } } } if (found) confirmed = true; if(!is_left && !is_right){ cout << "-- none!"; if(left_count == 0 && right_count == 0) confirmed = true; } else if(is_left && is_right){ cout << "-- both!"; } else { if (is_left){ cout << " -- left!"; } else { cout << " -- right!"; } } imshow("kalman", kf_img); // up till here if(confirmed){ nb_confirmed ++; cout << " -- confirmed" << endl; } else { cout << endl; } csv(&logs, center_left.x, center_left.y, is_left, center_right.x, center_right.y, is_right, confirmed); } nb_total ++; // // //displayOverlay("Blobs Image","Multi Thread"); new_dist = norm(center_left - center_right); // don't throw errors in the first 10 frames if(ticks > 10){ if(error_left > 20 && error_right > 20 /*&& new_dist < prev_dist*/){ circle(copy, Point(WIDTH/2, HEIGHT/2), 100, Scalar(0, 0, 255), 30); nb_errors ++; } } prev_dist = new_dist; imshow("Blobs Image",copy); key = waitKey(10); } else{ eof = true; } if(27 == key || 1048603 == key || eof){ double kalman_error_percentage = (nb_errors*100.0)/ticks; double confirm_percentage = (nb_confirmed*100.0/nb_total); stats << "kalman error frequency: " << kalman_error_percentage << "\%" << endl; stats << "confirmed: " << confirm_percentage << "\%" << endl; logs.close(); stats.close(); return 0; } } }
bool findBiggestBlobImage(IplImage* img, int color, IplImage* &output) { CBlobResult blobs; CBlob *currentBlob; blobs = CBlobResult( img, NULL, 0 ); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, m_minBlobSize ); double biggestArea = m_minBlobSize; int biggestBlob = -1; for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); double blobArea = currentBlob->Area(); if(blobArea > biggestArea) { biggestBlob = i; biggestArea = blobArea; } } if(biggestBlob >= 0) { int x = (int) blobs.GetBlob(biggestBlob)->MinX(); int y = (int) blobs.GetBlob(biggestBlob)->MinY(); int width= (int) blobs.GetBlob(biggestBlob)->MaxX()-x; int height= (int) blobs.GetBlob(biggestBlob)->MaxY()-y; IplImage* temp = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U, 1); IplImage* temp2 = cvCreateImage(cvSize(width, height),IPL_DEPTH_8U, 1); IplImage* result = cvCreateImage(cvSize(width, height),IPL_DEPTH_8U, 1); if(biggestBlob>=0) blobs.GetBlob(biggestBlob)->FillBlob(temp,cvScalar(255),x,y); cvSetImageROI(temp, cvRect(x, y, width, height)); cvCopy(temp,temp2); uchar* tempData; uchar* resultData; tempData = (uchar *)(temp2->imageData); resultData = (uchar *) (result->imageData); for (int j = 0; j < width*height; j++) { if (tempData[j]==255) resultData[j] = color; else resultData[j] = 0; } cvResize(result, output); cvReleaseImage(&temp); cvReleaseImage(&temp2); cvReleaseImage(&result); return true; } else return false; }
/* arg1: Width of each frame arg2: Height of each frame arg3: Target frames per second of the program arg4: Maximum number of blobs to track. Each blob MAY corresspond to a person in front of the camera */ int main(int argc, char* argv[]) { if (argc < 5) { cout << "Too few arguments to the program. Exiting...\n"; return 0; } int width, height, fps, numberOfBlobs; try { //Read the arguments width = atoi(argv[1]); height = atoi(argv[2]); fps = atoi(argv[3]); numberOfBlobs = atoi(argv[4]); //Done reading arguments } catch(...) { cout << "One or more arguments are invalid!. Exiting...\n"; return 0; } /* int width = 320; int height = 240; int fps = 10; int numberOfBlobs = 2; */ tempImageV4L = cvCreateImage(cvSize(width, height), 8, 3); frameNumber = 0; //Beginning initialising cameras rightCamera = new Camera("/dev/video0", width, height, fps); leftCamera = new Camera("/dev/video1", width, height, fps); //leftCamera = rightCamera; //If only one camera is available, uncomment this line and comment the line above this. //Done initialising cameras //Waste some frames so as to get the cameras running in full flow WasteNFrames(10); //Beginning capturing background backImageRight = GetNextCameraShot(rightCamera); backImageLeft = GetNextCameraShot(leftCamera); frameNumber++; cvtColor(backImageRight, backImageRight, CV_BGR2HSV); cvtColor(backImageLeft, backImageLeft, CV_BGR2HSV); //Done capturing background //General Stuff Mat motionImageRight(backImageRight.rows, backImageRight.cols, CV_8UC1); Mat motionImageLeft(backImageLeft.rows, backImageLeft.cols, CV_8UC1); Mat HSVImageRight, HSVImageLeft; Mat displayImageRight, displayImageLeft; //End of General Stuff while (1) //The infinite loop { //Beginning getting camera shots rightImage = GetNextCameraShot(rightCamera); leftImage = GetNextCameraShot(leftCamera); frameNumber++; //Done getting camera shots //Beginning getting motion images HSVImageRight = rightImage.clone(); cvtColor(HSVImageRight, HSVImageRight, CV_BGR2HSV); CompareWithBackground(HSVImageRight, backImageRight, motionImageRight); medianBlur(motionImageRight, motionImageRight, 3); HSVImageLeft = leftImage.clone(); cvtColor(HSVImageLeft, HSVImageLeft, CV_BGR2HSV); CompareWithBackground(HSVImageLeft, backImageLeft, motionImageLeft); medianBlur(motionImageLeft, motionImageLeft, 3); //Ended getting motion images cout << "\nFor frame #" << frameNumber << " :\n"; //Beginning Getting Blobs IplImage imageblobPixels = motionImageRight; CBlobResult blobs; blobs = CBlobResult(&imageblobPixels, NULL, 0); // Use a black background color. int minArea = 100 / ((640 / width) * (640 / width)); blobs.Filter(blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, minArea); int foundBlobs = blobs.GetNumBlobs(); //Ended Getting Blobs cout << "Found " << foundBlobs << " motion blobs\n"; //Creating copies of original images for modifying and displaying displayImageRight = rightImage.clone(); displayImageLeft = leftImage.clone(); //Done creating copies //Cycling through the blobs for (int blobIndex = 0; blobIndex < blobs.GetNumBlobs() && blobIndex < numberOfBlobs; blobIndex++) { cout << "Blob #" << blobIndex << " : "; //Getting blob details CBlob * blob = blobs.GetBlob(blobIndex); int x = blob->GetBoundingBox().x; int y = blob->GetBoundingBox().y; int w = blob->GetBoundingBox().width; int h = blob->GetBoundingBox().height; //Done getting blob details int sep = 0; //The point for which we want to find depth PixPoint inP = {x + w/2, y + h/2}, oP = {0, 0}; cout << "inPoint = {" << inP.x << ", " << inP.y << "} "; //Initialing the rectangle in which the corressponding point is likely in Rectangle rect; rect.location.x = -1; rect.location.y = inP.y - 5; rect.size.x = rightImage.cols; rect.size.y = 11; //Done initialising the target rectangle //Find the corressponding point and calculate the sepertion oP = PointCorresponder::correspondPoint(rightImage, leftImage, inP, rect, motionImageLeft); sep = inP.x - oP.x; cout << "foundPoint = {" << oP.x << ", " << oP.y << "} "; //Just for visual presentation DrawRect(displayImageRight, x, y, w, h); cv::circle(displayImageRight, Point(inP.x, inP.y), 10, Scalar(0), 3); cv::circle(displayImageLeft, Point(oP.x, oP.y), 10, Scalar(0), 3); //Done decoration //The thing we were looking for... how can we forget to print this? :P cout << "seperation = " << sep << "\n"; } //Show the windows cv::namedWindow("RIGHT"); cv::namedWindow("thresh"); cv::namedWindow("LEFT"); imshow("LEFT", displayImageLeft); imshow("RIGHT", displayImageRight); imshow("thresh", motionImageRight); //End of code for showing windows //The loop terminating condition if (waitKey(27) >= 0) break; } //Mission Successful!! :D :) return 0; }
void Auvsi_Recognize::extractShape( void ) { typedef cv::Vec<T, 1> VT; // Reduce input to two colors cv::Mat reducedColors = doClustering<T>( _image, 2 ); cv::Mat grayScaled, binary; // Make output grayscale grayScaled = convertToGray( reducedColors ); //cv::cvtColor( reducedColors, grayScaled, CV_RGB2GRAY ); // Make binary double min, max; cv::minMaxLoc( grayScaled, &min, &max ); cv::threshold( grayScaled, binary, min, 1.0, cv::THRESH_BINARY ); // ensure that background is black, image white if( binary.at<VT>(0, 0)[0] > 0.0f ) cv::threshold( grayScaled, binary, min, 1.0, cv::THRESH_BINARY_INV ); binary.convertTo( binary, CV_8U, 255.0f ); // Fill in all black regions smaller than largest black region with white CBlobResult blobs; CBlob * currentBlob; IplImage binaryIpl = binary; blobs = CBlobResult( &binaryIpl, NULL, 255 ); // Get area of biggest blob CBlob biggestBlob; blobs.GetNthBlob( CBlobGetArea(), 0, biggestBlob ); // Remove all blobs of smaller area blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_GREATER_OR_EQUAL, biggestBlob.Area() ); for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); currentBlob->FillBlob( &binaryIpl, cvScalar(255)); } // Fill in all small white regions black blobs = CBlobResult( &binaryIpl, NULL, 0 ); blobs.GetNthBlob( CBlobGetArea(), 0, biggestBlob ); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_GREATER_OR_EQUAL, biggestBlob.Area() ); for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); currentBlob->FillBlob( &binaryIpl, cvScalar(0)); } binary = cv::Scalar(0); biggestBlob.FillBlob( &binaryIpl, cvScalar(255)); _shape = binary; }
SHModel* ShapeModel( CvCapture* g_capture,StaticBGModel* BGModel , BGModelParams* BGParams){ int num_frames = 0; int total_blobs=0; float Sumatorio = 0; float SumatorioDes = 0; IplImage* frame = NULL; STFrame* frameData = NULL; SHModel* Shape = NULL; CBlobResult blobs; CBlob *currentBlob; IplImage* ImGris = cvCreateImage(cvGetSize( BGModel->Imed ), 8, 1 ); IplImage* Imblob = cvCreateImage(cvGetSize( BGModel->Imed ), 8, 3 ); IplImage* lastBG = cvCreateImage( cvGetSize( BGModel->Imed ),8, 1 ); IplImage* lastIdes = cvCreateImage( cvGetSize( BGModel->Imed ), IPL_DEPTH_32F, 1); cvZero(Imblob); // Iniciar estructura para modelo de forma Shape = ( SHModel *) malloc( sizeof( SHModel)); if ( !Shape ) {error(4);return 0;} Shape->FlyAreaDes = 0; Shape->FlyAreaMedia=0; //Pone a 0 los valores del vector areas //EXTRACCION DE LOS BLOBS Y CALCULO DE MEDIANA/MEDIA Y DESVIACION TIPICA PARA TODOS LOS FRAMES cvSetCaptureProperty( g_capture,1,BGParams->initDelay ); // establecemos la posición while( num_frames < ShParams->FramesTraining ){ frame = cvQueryFrame( g_capture ); if ( !frame ) { error(2); break; } if ( (cvWaitKey(10) & 255) == 27 ) break; ImPreProcess( frame, ImGris, BGModel->ImFMask, 0, BGModel->DataFROI); // Cargamos datos del fondo if(!frameData ) { //en la primera iteración iniciamos el modelo dinamico al estático // Iniciar estructura para datos del nuevo frame frameData = InitNewFrameData( frame ); cvCopy( BGModel->Imed,frameData->BGModel); cvSet(frameData->IDesvf, cvScalar(1)); cvCopy( BGModel->Imed,lastBG); } else{ // cargamos los últimos parámetros del fondo. cvCopy( lastBG, frameData->BGModel); cvCopy( lastIdes,frameData->IDesvf ); } // obtener la mascara del FG y la lista con los datos de sus blobs. //// BACKGROUND UPDATE // Actualización del fondo // establecer parametros UpdateBGModel( ImGris,frameData->BGModel,frameData->IDesvf, BGParams, BGModel->DataFROI, BGModel->ImFMask ); /////// BACKGROUND DIFERENCE. Obtención de la máscara del foreground BackgroundDifference( ImGris, frameData->BGModel,frameData->IDesvf, frameData->FG ,BGParams, BGModel->DataFROI); // guardamos las imagenes para iniciar el siguiente frame cvCopy( frameData->BGModel, lastBG); cvCopy( frameData->IDesvf,lastIdes); //Obtener los Blobs y excluir aquellos que no interesan por su tamaño // cvSetImageROI( frameData->FG , BGModel->DataFROI); blobs = CBlobResult( frameData->FG, NULL, 100, true ); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(),B_GREATER,100); blobs.Filter( blobs, B_EXCLUDE, CBlobGetPerimeter(),B_GREATER,1000); int j = blobs.GetNumBlobs();//numero de blos encontrados en el frame total_blobs=total_blobs+j; // Contabiliza los blobs encontrados para todos los frames //Recorrer Blob a blob y obtener las caracteristicas del AREA de cada uno de ellos for (int i = 0; i < blobs.GetNumBlobs(); i++ ){ //for 1 currentBlob = blobs.GetBlob(i); CBlobGetArea(); if(ShParams->SHOW_DATA_AREAS) { //printf("Area blob %d = %f ",i,currentBlob->area); } //Estimar la media de las Areas Sumatorio = Sumatorio + currentBlob->area; SumatorioDes = SumatorioDes + currentBlob->area*currentBlob->area; muestrearAreas( currentBlob->area); currentBlob->FillBlob( Imblob, CV_RGB(255,0,0)); }//Fin del For 1 Shape->FlyAreaMedia = Sumatorio / total_blobs; Shape->FlyAreaDes = (SumatorioDes / total_blobs) - Shape->FlyAreaMedia*Shape->FlyAreaMedia; num_frames += 1; // cvResetImageROI(frameData->FG); DraWWindow(Imblob, frameData, BGModel, SHOW_SHAPE_MODELING, COMPLETO); DraWWindow(Imblob, frameData, BGModel, SHAPE,SIMPLE ); } desvanecer( NULL, 20); Shape->FlyAreaDes = sqrt(abs(Shape->FlyAreaDes) ) ; if( Shape->FlyAreaDes == 0){ printf("hola"); } //Mostrar mediana y media para todos los frames if(ShParams->SHOW_DATA_AREAS ) printf("\n MEDIA AREAS: %f \t DESVIACION AREAS: %f",Shape->FlyAreaMedia,Shape->FlyAreaDes); free( ShParams); liberarSTFrame( frameData ); cvReleaseImage( &ImGris); cvReleaseImage( &Imblob); cvReleaseImage( &lastIdes); cvReleaseImage( &lastBG); return Shape; }//Fin de la función ShapeModel2
void Auvsi_Recognize::extractLetter( void ) { typedef cv::Vec<unsigned char, 1> VT_binary; #ifdef TWO_CHANNEL typedef cv::Vec<T, 2> VT; #else typedef cv::Vec<T, 3> VT; #endif typedef cv::Vec<int, 1> IT; // Erode input slightly cv::Mat input; cv::erode( _shape, input, cv::Mat() ); // Remove any small white blobs left over CBlobResult blobs; CBlob * currentBlob; CBlob biggestBlob; IplImage binaryIpl = input; blobs = CBlobResult( &binaryIpl, NULL, 0 ); blobs.GetNthBlob( CBlobGetArea(), 0, biggestBlob ); blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_GREATER_OR_EQUAL, biggestBlob.Area() ); for (int i = 0; i < blobs.GetNumBlobs(); i++ ) { currentBlob = blobs.GetBlob(i); currentBlob->FillBlob( &binaryIpl, cvScalar(0)); } // Perform k-means on this region only int areaLetter = (int)biggestBlob.Area(); cv::Mat kMeansInput = cv::Mat( areaLetter, 1, _image.type() ); // Discard if we couldn't extract a letter if( areaLetter <= 0 ) { _letter = cv::Mat( _shape ); _letter = cv::Scalar(0); return; } cv::MatIterator_<VT_binary> binaryIterator = input.begin<VT_binary>(); cv::MatIterator_<VT_binary> binaryEnd = input.end<VT_binary>(); cv::MatIterator_<VT> kMeansIterator = kMeansInput.begin<VT>(); for( ; binaryIterator != binaryEnd; ++binaryIterator ) { if( (*binaryIterator)[0] > 0 ) { (*kMeansIterator) = _image.at<VT>( binaryIterator.pos() ); ++kMeansIterator; } } // Get k-means labels cv::Mat labels = doClustering<T>( kMeansInput, 2, false ); int numZeros = areaLetter - cv::countNonZero( labels ); bool useZeros = numZeros < cv::countNonZero( labels ); // Reshape into original form _letter = cv::Mat( _shape.size(), _shape.type() ); _letter = cv::Scalar(0); binaryIterator = input.begin<VT_binary>(); binaryEnd = input.end<VT_binary>(); cv::MatIterator_<IT> labelsIterator = labels.begin<IT>(); for( int index = 0; binaryIterator != binaryEnd; ++binaryIterator ) { if( (*binaryIterator)[0] > 0 ) { // Whichever label was the minority, we make that value white and all other values black unsigned char value = (*labelsIterator)[0]; if( useZeros ) if( value ) value = 0; else value = 255; else if( value ) value = 255; else value = 0; _letter.at<VT_binary>( binaryIterator.pos() ) = VT_binary( value ); ++labelsIterator; } } }
void BlobDetection::init() { /** Init is called just after construction. */ try { initStatusMask(); // Create a proxy to ALVideoDevice on the robot. ALVideoDeviceProxy* camProxy = new ALVideoDeviceProxy(getParentBroker()); behavoirProxy = new ALBehaviorManagerProxy(getParentBroker()); ledProxy = new ALLedsProxy(getParentBroker()); motionProxy = new ALMotionProxy(getParentBroker()); initLeds(); // Subscribe a client image requiring 640*480px and RGB colorspace. const std::string cameraID = camProxy->subscribeCamera("camera_01", 0, AL::kVGA, AL::kRGBColorSpace , 10); // Create a proxy to ALMemoryProxy on the robot. ALMemoryProxy fMemoryProxy = ALMemoryProxy(getParentBroker()); fMemoryProxy.subscribeToEvent("FrontTactilTouched", "BlobDetection","onFrontTactilTouched"); fMemoryProxy.subscribeToEvent("MiddleTactilTouched", "BlobDetection","onMiddleTactilTouched"); HandOrientation rightOrientationLast = NONE; HandOrientation leftOrientationLast = NONE; HandOrientation rightOrientationCur = NONE, leftOrientationCur = NONE; // stand up behavoirProxy->runBehavior(STAND); // RECODING: prepare vido recording /* int size; std::string arvFile = std::string("/home/nao/video"); streamHeader tmpStreamHeader; std::vector<streamHeader> streamHeaderVector; ALVideo videoFile; tmpStreamHeader.width = 640; tmpStreamHeader.height = 480; tmpStreamHeader.colorSpace = AL::kRGBColorSpace; // this is not really necessary, coz in pyuv u decide in which colorspace the vid is shown tmpStreamHeader.pixelDepth = 8; streamHeaderVector.push_back(tmpStreamHeader); std::cout<<"Output arv file properties: "<< streamHeaderVector[0].width <<"x"<< streamHeaderVector[0].height <<" Colorspace id:"<< streamHeaderVector[0].colorSpace <<" Pixel depth:"<< streamHeaderVector[0].pixelDepth <<std::endl; if( !videoFile.recordVideo( arvFile, 0, streamHeaderVector ) ) { std::cout<<"Error writing "<< arvFile <<" file."<<std::endl; return; } */ int j = 0; while(1) { if(touched) { //j++; //Switch LEDs RED OFF, BLUE ON if(red_on == 1) { ledProxy->off(FACE_LED_RED); red_on = 0; } if(blue_on == 0) { ledProxy->on(FACE_LED_BLUE); blue_on = 1; } // Fetch the image from the nao camera, we subscribed on. Its in RGB colorspace ALImage *img_cam = (ALImage*)camProxy->getImageLocal(cameraID); // Create an openCv Mat header to convert the aldebaran AlImage image. // To convert the aldebaran image only the data are of it are assigned to the openCv image. Mat img_hsv = Mat(Size(img_cam->getWidth(), img_cam->getHeight()), CV_8UC3); img_hsv.data = (uchar*) img_cam->getData(); // Convert the RGB image from the camera to an HSV image */ cvtColor(img_hsv, img_hsv, CV_RGB2HSV); // RECORDING: record converted to hsv video //videoFile.write((char*) img_hsv.data, size); //video ging hier // Get the separate HSV color components of the color input image. std::vector<Mat> channels(3); split(img_hsv, channels); Mat planeH = channels[0]; Mat planeS = channels[1]; Mat planeV = channels[2]; // Detect which pixels in each of the H, S and V channels are probably skin pixels. threshold(planeH, planeH, 150, UCHAR_MAX, CV_THRESH_BINARY_INV);//18 threshold(planeS, planeS, 60, UCHAR_MAX, CV_THRESH_BINARY);//50 threshold(planeV, planeV, 170, UCHAR_MAX, CV_THRESH_BINARY);//80 // Combine all 3 thresholded color components, so that an output pixel will only // be white if the H, S and V pixels were also white. Mat imageSkinPixels = Mat(img_hsv.size(), CV_8UC3); // Greyscale output image. bitwise_and(planeH, planeS, imageSkinPixels); // imageSkin = H {BITWISE_AND} S. bitwise_and(imageSkinPixels, planeV, imageSkinPixels); // imageSkin = H {BITWISE_AND} S {BITWISE_AND} V. // Assing the Mat (C++) to an IplImage (C), this is necessary because the blob detection is writtn in old opnCv C version IplImage ipl_imageSkinPixels = imageSkinPixels; // RECODING: record the video using the C container variable // RECODING: store the size (in memory meaning) of the image for recording purpouse //size = img_cam->getSize(); //videoFile.write((char*) ipl_imageSkinPixels.imageData, size/3); // Set up the blob detection. CBlobResult blobs; blobs.ClearBlobs(); blobs = CBlobResult(&ipl_imageSkinPixels, NULL, 0); // Use a black background color. // Ignore the blobs whose area is less than minArea. blobs.Filter(blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, minBlobArea); // ##### Gestures ##### std::cout << "Number of Blobs: " << blobs.GetNumBlobs() <<endl; if(blobs.GetNumBlobs() == 0) { //picture empty } else if(blobs.GetNumBlobs() == 1) { //head detected trackHead(getCenterPoint(blobs.GetBlob(0)->GetBoundingBox()).x, getCenterPoint(blobs.GetBlob(0)->GetBoundingBox()).y); } else if(blobs.GetNumBlobs() == 2 || blobs.GetNumBlobs() == 3) { //head + one hand || head + two hands Rect rect[3]; int indexHead = -1, indexHandLeft = -1, indexHandRight = -1; //Get Bounding Boxes for(int i = 0; i< blobs.GetNumBlobs(); i++) { rect[i] = blobs.GetBlob(i)->GetBoundingBox(); } //Detect Head and Hand indexes if(blobs.GetNumBlobs() == 2) { // head and one hand int indexHand = -1; if(getCenterPoint(rect[0]).y < getCenterPoint(rect[1]).y) { // rect[0] is head indexHead = 0; indexHand = 1; } else { // rect[1] is head indexHead = 1; indexHand = 0; } if(getHandside(rect[indexHead], rect[indexHand]) == LEFT) { // hand is left indexHandLeft = 1; indexHandRight = -1; } else { // hand ist right indexHandLeft = -1; indexHandRight = 1; } } else { //two hands int indexHand1 = -1; int indexHand2 = -1; if(getCenterPoint(rect[0]).y < getCenterPoint(rect[1]).y && getCenterPoint(rect[0]).y < getCenterPoint(rect[2]).y) { // rect[0] is head indexHead = 0; indexHand1 = 1; indexHand2 = 2; } else if(getCenterPoint(rect[1]).y < getCenterPoint(rect[0]).y && getCenterPoint(rect[1]).y < getCenterPoint(rect[2]).y) { // rect[1] is head indexHead = 1; indexHand1 = 0; indexHand2 = 2; } else { // rect[2] is head indexHead = 2; indexHand1 = 0; indexHand2 = 1; } if(getHandside(rect[indexHead], rect[indexHand1]) == LEFT) { indexHandLeft = indexHand1; indexHandRight = indexHand2; } else { indexHandLeft = indexHand2; indexHandRight = indexHand1; } } // bobs are detected. // adjuste naos head to detected head-bolb trackHead(getCenterPoint(rect[indexHead]).x, getCenterPoint(rect[indexHead]).y); //Get Orientations from Hand rects leftOrientationCur = (indexHandLeft != -1)?getOrientationOfRect(rect[indexHandLeft]):NONE; rightOrientationCur = (indexHandRight != -1)?getOrientationOfRect(rect[indexHandRight]):NONE; //Check Change of Left hand switch(detectHandStateChange(leftOrientationLast, leftOrientationCur)) { case PORTRAIT_TO_LANDSCAPE: handleGestures(LEFT_FLIP_DOWN); break; case LANDSCAPE_TO_PORTRAIT: handleGestures(LEFT_FLIP_UP); break; case NOCHANGE: // TODO default: break; } //Check Change of Right hand switch(detectHandStateChange(rightOrientationLast, rightOrientationCur)) { case PORTRAIT_TO_LANDSCAPE: handleGestures(RIGHT_FLIP_DOWN); break; case LANDSCAPE_TO_PORTRAIT: handleGestures(RIGHT_FLIP_UP); break; case NOCHANGE: //TODO default: break; } } else if(blobs.GetNumBlobs() > 3) { //too much information cout<<"too much information"<<endl; } leftOrientationLast = leftOrientationCur; rightOrientationLast = rightOrientationCur; // RECODING: close the video recorder //videoFile.closeVideo(); // Free all the resources. camProxy->releaseImage(cameraID); //IplImage* p_iplImage = &ipl_imageSkinPixels; //cvReleaseImage(&p_iplImage); qi::os::sleep(0.5f); //sleep(1); } else { //Switch LEDs RED ON, BLUE OFF if(red_on == 0) { ledProxy->on(FACE_LED_RED); red_on = 1; behavoirProxy->runBehavior(STAND); } if(blue_on == 1) { ledProxy->off(FACE_LED_BLUE); blue_on = 0; } } } camProxy->unsubscribe(cameraID); } catch (const AL::ALError& e) { std::cerr << "Caught exception: " << e.what() << std::endl; return; } return; }