Пример #1
0
void ProcessMerkleBlock(CNode& pfrom, CDataStream& vRecv,
        ThinBlockWorker& worker,
        const TxFinder& txfinder) {

    CMerkleBlock merkleBlock;
    vRecv >> merkleBlock;

    uint256 hash = merkleBlock.header.GetHash();
    pfrom.AddInventoryKnown(CInv(MSG_BLOCK, hash));


    if (!worker.isAvailable() && worker.blockHash() != hash)
        LogPrint("thin", "expected peer %d to be working on %s, "
                "but received block %s, switching peer to new block\n",
                pfrom.id, worker.blockStr(), hash.ToString());

    if (HaveBlockData(hash)) {
        LogPrint("thin", "already had block %s, "
                "ignoring merkleblock (peer %d)\n",
                hash.ToString(), pfrom.id);
        worker.setAvailable();
        return;
    }

    worker.setToWork(hash);

    if (worker.isStubBuilt()) {
        LogPrint("thin", "already built thin block stub "
                "%s (peer %d)\n", hash.ToString(), pfrom.id);
        SendPing(pfrom);
        return;
    }

    LogPrint("thin", "building thin block %s (peer %d) ",
            hash.ToString(), pfrom.id);

    // Now attempt to reconstruct the block from the state of our memory pool.
    // The peer should have already sent us the transactions we need before
    // sending us this message. If it didn't, we just ignore the message
    // entirely for now.
    try {
        worker.buildStub(merkleBlock, txfinder);
        SendPing(pfrom);
    }
    catch (const thinblock_error& e) {
        pfrom.PushMessage("reject", std::string("merkleblock"),
                REJECT_MALFORMED, std::string("bad merkle tree"), hash);
        Misbehaving(pfrom.GetId(), 10);  // FIXME: Is this DoS policy reasonable? Immediate disconnect is better?
        LogPrintf("%s peer=%d", e.what(), pfrom.GetId());
        worker.setAvailable();
        return;
    }
}
CNode* CMigrationInfo::FindNodeWithFreeMem(CNode* i_sourceNode, CProcess* i_process)
{
	i_sourceNode->WriteLog("MIGRATION - MEM ISSUES - Searching for destination node to establish migration");
	CNode* returnValue = NULL;
	bool found = false;
	double maxFreeMem = 0;
	uint32_t maxIndex = 0;
	// find out which is the process with the greatest free mem that we can migrate to:
	if (i_sourceNode->GetAvailableBandwidth() > 0)
	{
		for (uint32_t i = 0; i < CMasterSingleton::GetInstance()->GetNodeCount(); ++i)
		{
			CNode* currentNode = CMasterSingleton::GetInstance()->GetNode(i);
			double freeMem = currentNode->GetFreeMem();
			if (maxFreeMem < freeMem && i_sourceNode->GetId() != currentNode->GetId() && CanBeDestination(currentNode, i_process))
			{
				maxFreeMem = freeMem;
				maxIndex = i;
				found = true;
			}
		}

		// if found is false, we will return a null pointer meaning that the migration should not happen
		if (found)
			returnValue = CMasterSingleton::GetInstance()->GetNode(maxIndex);
	}

	return returnValue;
}
CNode* CMigrationInfo::FindNodeWithFreeCpu(CNode* i_sourceNode, CProcess* i_process)
{
	i_sourceNode->WriteLog("MIGRATION - CPU ISSUES - Searching for destination node to establish migration");
	CNode* returnValue = NULL;
	bool found = false;
	uint32_t minIndex = 0;
	double minCpu = 1;
	if (i_sourceNode->GetAvailableBandwidth() > 0)
	{
		for (uint32_t i = 0; i < CMasterSingleton::GetInstance()->GetNodeCount(); ++i)
		{
			CNode* currentNode = CMasterSingleton::GetInstance()->GetNode(i);
			double cpuUsage = currentNode->GetCpuUsage();
			if (minCpu > cpuUsage && i_sourceNode->GetId() != currentNode->GetId() && CanBeDestination(currentNode, i_process))
			{
				minCpu = cpuUsage;
				minIndex = i;
				found = true;
			}
		}

		// if found is false, we will return a null pointer meaning that the migration should not happen
		if (found)
			returnValue = CMasterSingleton::GetInstance()->GetNode(minIndex);
	}

	return returnValue;
}