// Create CPolyLine for a pad // CPolyLine * CPolyLine::MakePolylineForPad( int type, int x, int y, int w, int l, int r, int angle ) { CPolyLine * poly = new CPolyLine; int dx = l/2; int dy = w/2; if( angle%180 == 90 ) { dx = w/2; dy = l/2; } if( type == PAD_ROUND ) { poly->Start( 0, 0, 0, x-dx, y, 0, NULL, NULL ); poly->AppendCorner( x, y+dy, ARC_CW, 0 ); poly->AppendCorner( x+dx, y, ARC_CW, 0 ); poly->AppendCorner( x, y-dy, ARC_CW, 0 ); poly->Close( ARC_CW ); } return poly; }
// Use the General Polygon Clipping Library to clip contours // If this results in new polygons, return them as CArray p // If bRetainArcs == TRUE, try to retain arcs in polys // Returns number of external contours, or -1 if error // int CPolyLine::NormalizeWithGpc( CArray<CPolyLine*> * pa, BOOL bRetainArcs ) { CArray<CArc> arc_array; if( bRetainArcs ) MakeGpcPoly( -1, &arc_array ); else MakeGpcPoly( -1, NULL ); Undraw(); // now, recreate poly // first, find outside contours and create new CPolyLines if necessary int n_ext_cont = 0; for( int ic=0; ic<m_gpc_poly->num_contours; ic++ ) { if( !(m_gpc_poly->hole)[ic] ) { if( n_ext_cont == 0 ) { // first external contour, replace this poly corner.RemoveAll(); side_style.RemoveAll(); m_ncorners = 0; for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ ) { int x = ((m_gpc_poly->contour)[ic].vertex)[i].x; int y = ((m_gpc_poly->contour)[ic].vertex)[i].y; if( i==0 ) Start( m_layer, m_w, m_sel_box, x, y, m_hatch, &m_id, m_ptr ); else AppendCorner( x, y, STRAIGHT, FALSE ); } Close(); n_ext_cont++; } else if( pa ) { // next external contour, create new poly CPolyLine * poly = new CPolyLine; pa->SetSize(n_ext_cont); // put in array (*pa)[n_ext_cont-1] = poly; for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ ) { int x = ((m_gpc_poly->contour)[ic].vertex)[i].x; int y = ((m_gpc_poly->contour)[ic].vertex)[i].y; if( i==0 ) poly->Start( m_layer, m_w, m_sel_box, x, y, m_hatch, &m_id, m_ptr ); else poly->AppendCorner( x, y, STRAIGHT, FALSE ); } poly->Close( STRAIGHT, FALSE ); n_ext_cont++; } } } // now add cutouts to the CPolyLine(s) for( int ic=0; ic<m_gpc_poly->num_contours; ic++ ) { if( (m_gpc_poly->hole)[ic] ) { CPolyLine * ext_poly = NULL; if( n_ext_cont == 1 ) { ext_poly = this; } else { // find the polygon that contains this hole for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ ) { int x = ((m_gpc_poly->contour)[ic].vertex)[i].x; int y = ((m_gpc_poly->contour)[ic].vertex)[i].y; if( TestPointInside( x, y ) ) ext_poly = this; else { for( int ext_ic=0; ext_ic<n_ext_cont-1; ext_ic++ ) { if( (*pa)[ext_ic]->TestPointInside( x, y ) ) { ext_poly = (*pa)[ext_ic]; break; } } } if( ext_poly ) break; } } if( !ext_poly ) ASSERT(0); for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ ) { int x = ((m_gpc_poly->contour)[ic].vertex)[i].x; int y = ((m_gpc_poly->contour)[ic].vertex)[i].y; ext_poly->AppendCorner( x, y, STRAIGHT, FALSE ); } ext_poly->Close( STRAIGHT, FALSE ); } } if( bRetainArcs ) RestoreArcs( &arc_array, pa ); FreeGpcPoly(); return n_ext_cont; }
CPolyLine* CPolyLine::Fillet( unsigned int aRadius, unsigned int aSegments ) { CPolyLine* newPoly = new CPolyLine; if( !aRadius ) { newPoly->Copy( this ); return newPoly; } int polycount = GetContoursCount(); for( int contour = 0; contour < polycount; contour++ ) { unsigned int startIndex = GetContourStart( contour ); unsigned int endIndex = GetContourEnd( contour ); for( unsigned int index = startIndex; index <= endIndex; index++ ) { int x1, y1; // Current vertex long long xa, ya; // Previous vertex long long xb, yb; // Next vertex double nx, ny; x1 = m_CornersList[index].x; y1 = m_CornersList[index].y; if( index == startIndex ) { xa = m_CornersList[endIndex].x - x1; ya = m_CornersList[endIndex].y - y1; } else { xa = m_CornersList[index - 1].x - x1; ya = m_CornersList[index - 1].y - y1; } if( index == endIndex ) { xb = m_CornersList[startIndex].x - x1; yb = m_CornersList[startIndex].y - y1; } else { xb = m_CornersList[index + 1].x - x1; yb = m_CornersList[index + 1].y - y1; } double lena = hypot( xa, ya ); double lenb = hypot( xb, yb ); double cosine = ( xa * xb + ya * yb ) / ( lena * lenb ); double radius = aRadius; double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 ); // Do nothing in case of parallel edges if( std::isinf( denom ) ) continue; // Limit rounding distance to one half of an edge if( 0.5 * lena * denom < radius ) radius = 0.5 * lena * denom; if( 0.5 * lenb * denom < radius ) radius = 0.5 * lenb * denom; // Calculate fillet arc absolute center point (xc, yx) double k = radius / sqrt( .5 * ( 1 - cosine ) ); double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) + ( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) ); double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab; double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab; // Calculate arc start and end vectors k = radius / sqrt( 2 / ( 1 + cosine ) - 1 ); double xs = x1 + k * xa / lena - xc; double ys = y1 + k * ya / lena - yc; double xe = x1 + k * xb / lenb - xc; double ye = y1 + k * yb / lenb - yc; // Cosine of arc angle double argument = ( xs * xe + ys * ye ) / ( radius * radius ); if( argument < -1 ) // Just in case... argument = -1; else if( argument > 1 ) argument = 1; double arcAngle = acos( argument ); // Calculate the number of segments double tempSegments = (double) aSegments * ( arcAngle / ( 2 * M_PI ) ); if( tempSegments - (int) tempSegments > 0 ) tempSegments++; unsigned int segments = (unsigned int) tempSegments; double deltaAngle = arcAngle / segments; double startAngle = atan2( -ys, xs ); // Flip arc for inner corners if( xa * yb - ya * xb <= 0 ) deltaAngle *= -1; nx = xc + xs; ny = yc + ys; if( index == startIndex ) newPoly->Start( GetLayer(), KiROUND( nx ), KiROUND( ny ), GetHatchStyle() ); else newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) ); for( unsigned int j = 0; j < segments; j++ ) { nx = xc + cos( startAngle + (j + 1) * deltaAngle ) * radius; ny = yc - sin( startAngle + (j + 1) * deltaAngle ) * radius; newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) ); } } newPoly->CloseLastContour(); } return newPoly; }
CPolyLine* CPolyLine::Chamfer( unsigned int aDistance ) { CPolyLine* newPoly = new CPolyLine; if( !aDistance ) { newPoly->Copy( this ); return newPoly; } int polycount = GetContoursCount(); for( int contour = 0; contour < polycount; contour++ ) { unsigned int startIndex = GetContourStart( contour ); unsigned int endIndex = GetContourEnd( contour ); for( unsigned int index = startIndex; index <= endIndex; index++ ) { int x1, y1, nx, ny; long long xa, ya, xb, yb; x1 = m_CornersList[index].x; y1 = m_CornersList[index].y; if( index == startIndex ) { xa = m_CornersList[endIndex].x - x1; ya = m_CornersList[endIndex].y - y1; } else { xa = m_CornersList[index - 1].x - x1; ya = m_CornersList[index - 1].y - y1; } if( index == endIndex ) { xb = m_CornersList[startIndex].x - x1; yb = m_CornersList[startIndex].y - y1; } else { xb = m_CornersList[index + 1].x - x1; yb = m_CornersList[index + 1].y - y1; } unsigned int lena = KiROUND( hypot( xa, ya ) ); unsigned int lenb = KiROUND( hypot( xb, yb ) ); unsigned int distance = aDistance; // Chamfer one half of an edge at most if( 0.5 * lena < distance ) distance = int( 0.5 * lena ); if( 0.5 * lenb < distance ) distance = int( 0.5 * lenb ); nx = KiROUND( (distance * xa) / hypot( xa, ya ) ); ny = KiROUND( (distance * ya) / hypot( xa, ya ) ); if( index == startIndex ) newPoly->Start( GetLayer(), x1 + nx, y1 + ny, GetHatchStyle() ); else newPoly->AppendCorner( x1 + nx, y1 + ny ); nx = KiROUND( (distance * xb) / hypot( xb, yb ) ); ny = KiROUND( (distance * yb) / hypot( xb, yb ) ); newPoly->AppendCorner( x1 + nx, y1 + ny ); } newPoly->CloseLastContour(); } return newPoly; }