void CJtreeInfEngine::
DivideJTreeNodePotByDistribFun( int clqPotNum, const int *domain,
			       const CDistribFun *pDistrFun )
{
    // bad-args check
    PNL_CHECK_RANGES( clqPotNum, 0, m_pJTree->GetNumberOfNodes() - 1 );
    PNL_CHECK_IS_NULL_POINTER(domain);
    PNL_CHECK_IS_NULL_POINTER(pDistrFun);
    // bad-args check end

    CPotential *pNodePot = m_pJTree->GetNodePotential(clqPotNum);

    int       nodePotDomSz;
    const int *nodePotDomain;

    pNodePot->GetDomain( &nodePotDomSz, &nodePotDomain );

    pNodePot->GetDistribFun()->DivideInSelfData( nodePotDomain, domain,
	pDistrFun );
}
Пример #2
0
int testShrinkObservedNodes()
{
    int i/*,j*/;
    int ret = TRS_OK;
    /*prepare to read the values from console*/
    EDistributionType dt;
    int disType = -1;
    EFactorType pt;
    int paramType = -1;
    /*read int disType corresponding DistributionType*/
    while((disType<0)||(disType>0))/*now we have only Tabulars&Gaussian*/
    {
	trsiRead( &disType, "0", "DistributionType");
    }
    /*read int paramType corresponding FactorType*/
    while((paramType<0)||(paramType>2))
    {
	trsiRead( &paramType, "0", "FactorType");
    }
    dt = EDistributionType(disType);
    pt = EFactorType(paramType);
    int numberOfNodes = 0;
    /*read number of nodes in Factor domain*/
    while(numberOfNodes<=0)
    {
	trsiRead( &numberOfNodes, "1", "Number of Nodes in domain");
    }
    int numNodeTypes = 0;
    /*read number of node types in model*/
    while(numNodeTypes<=0)
    {
	trsiRead( &numNodeTypes, "1", "Number of node types in Domain");
    }
    //int seed1 = pnlTestRandSeed()/*%100000*/;
    /*create string to display the value*/
    /*	char *value = new char[20];
    value = _itoa(seed1, value, 10);
    trsiRead(&seed1, value, "Seed for srand to define NodeTypes etc.");
    delete []value;
    trsWrite(TW_CON|TW_RUN|TW_DEBUG|TW_LST, "seed for rand = %d\n", seed1);
    int *domain = (int *)trsGuardcAlloc(numberOfNodes, sizeof(int));
    CNodeType * allNodeTypes = (CNodeType*)trsGuardcAlloc(numNodeTypes,
    sizeof(CNodeType));
    //To generate the NodeTypes we use rand()% and creates only Tabular now
    for(i=0; i<numNodeTypes; i++)
    {
    allNodeTypes[i] = CNodeType(1, 1+rand()%(numNodeTypes+3));
    }
    */	
    
    /*load data for parameter::ShrinkObservedNodes from console*/
    intVector domain;
    domain.assign( numberOfNodes, 0 );
    nodeTypeVector allNodeTypes;
    allNodeTypes.assign( numNodeTypes, CNodeType() );
    /*read node types*/
    for(i=0; i < numNodeTypes; i++)
    {
	int IsDiscrete = -1;
	int NodeSize = -1;
	while((IsDiscrete<0)||(IsDiscrete>1))
	    /*now we have tabular & Gaussian nodes!! */
	    trsiRead(&IsDiscrete, "1", "Is the node discrete?");
	while(NodeSize<0)
	    trsiRead(&NodeSize, "2", "NodeSize of node");
	allNodeTypes[i] = CNodeType( IsDiscrete != 0, NodeSize );
    }
    const CNodeType **nodeTypesOfDomain = (const CNodeType**)
	trsGuardcAlloc(numberOfNodes, sizeof(CNodeType*));
    int numData = 1;
    int *Ranges = (int*)trsGuardcAlloc(numberOfNodes, sizeof(int));
    /*associate nodes to node types*/
    for(i=0; i<numberOfNodes; i++)
    {
	domain[i] = i;
	int nodeAssociationToNodeType = -1;
	while((nodeAssociationToNodeType<0)||(nodeAssociationToNodeType>=
	    numNodeTypes))
	    trsiRead(&nodeAssociationToNodeType, "0", 
	    "node i has type nodeAssociationToNodeType");
	nodeTypesOfDomain[i] = &allNodeTypes[nodeAssociationToNodeType];
	//	nodeTypesOfDomain[i] = &allNodeTypes[rand()%numNodeTypes];
	Ranges[i] = nodeTypesOfDomain[i]->GetNodeSize();
	numData=numData*Ranges[i];
    }
    
    CModelDomain* pMD = CModelDomain::Create( allNodeTypes, domain );
    
    /*create factor according all information*/
    CFactor *pMyParam = NULL;
    float *data = (float *)trsGuardcAlloc(numData, sizeof(float));
    char *stringVal;/* = (char*)trsGuardcAlloc(50, sizeof(char));*/
    double val=0;
    /*read the values from console*/
    if(pt == ftPotential)
    {
	pMyParam = CTabularPotential::Create( &domain.front(), numberOfNodes, pMD );
	/*here we can create data by multiply on 0.1 - numbers are nonnormalized*/
	for(i=0; i<numData; i++)
	{
	    val = 0.1*i;
	    stringVal = trsDouble(val);
	    trsdRead(&val, stringVal, "value of i's data position");
	    data[i] = (float)val;
	    //data[i] = (float)rand()/1000;
	}
    }
    else
    {
    /*we can only read data from console - it must be normalized!!
	(according their dimensions) - or we can normalize it by function!*/
	if(pt == ftCPD)
	    pMyParam = CTabularCPD::Create( &domain.front(), numberOfNodes, pMD );
	for(i=0; i<numData; i++)
	{
	    val = -1;
	    while((val<0)||(val>1))
	    {
		trsdRead(&val, "-1", "value of (2*i)'s data position");
	    }
	    data[i] = (float)val;
	}
    }
    //trsWrite(TW_CON|TW_RUN|TW_DEBUG|TW_LST, "data for Factor = %d\n", data[i]);
    pMyParam->AllocMatrix(data,matTable);
    int nObsNodes = 0;	/*rand()%numberOfNodes;*/
    while((nObsNodes<=0)||(nObsNodes>numberOfNodes))
    {
	trsiRead(&nObsNodes, "1", "Number of Observed Nodes");
    }
    intVector myHelpForEvidence = intVector(domain.begin(), domain.end() );
    int *ObsNodes = (int *)trsGuardcAlloc(nObsNodes, sizeof(int));
    valueVector TabularValues;
    TabularValues.assign( nObsNodes, (Value)0 );
    char *strVal;
    for(i=0; i<nObsNodes; i++)
    {
	//fixme - we need to have noncopy only different ObsNodes
	/*		j = rand()%(numberOfNodes-i);*/
	int numberOfObsNode = -1;
	strVal = trsInt(i);
        intVector::iterator j = std::find( myHelpForEvidence.begin(), myHelpForEvidence.end(), numberOfObsNode );
	while((numberOfObsNode<0)||(numberOfObsNode>numberOfNodes)||
	    (j==myHelpForEvidence.end()))
	{
	    trsiRead(&numberOfObsNode, strVal,"Number of i's observed node");
	    j = std::find(myHelpForEvidence.begin(), myHelpForEvidence.end(),
		numberOfObsNode);
	}
	//ObsNodes[i] = myHelpForEvidence[j];
	myHelpForEvidence.erase( j );
	ObsNodes[i] = numberOfObsNode;
	int valueOfNode = -1;
	int maxValue = (*nodeTypesOfDomain[ObsNodes[i]]).GetNodeSize();
	while((valueOfNode<0)||(valueOfNode>=maxValue))
	{
	    trsiRead(&valueOfNode,"0","this is i's observed node value");
	}
	TabularValues[i].SetInt(valueOfNode);
	/*rand()%((*nodeTypesOfDomain[ObsNodes[i]]).pgmGetNodeSize());*/
    }
    CEvidence* pEvidence = CEvidence::Create( pMD, nObsNodes, ObsNodes, TabularValues );
    myHelpForEvidence.clear();
    CNodeType *ObservedNodeType = (CNodeType*)trsGuardcAlloc(1, 
	sizeof(CNodeType));
    *ObservedNodeType = CNodeType(1,1);
    CPotential *myTakedInFactor = static_cast<CPotential*>(pMyParam)->ShrinkObservedNodes(pEvidence);
    const int *myfactorDomain;
    int factorDomSize ;
    myTakedInFactor->GetDomain(&factorDomSize, &myfactorDomain);
#if 0
    CNumericDenseMatrix<float> *mySmallMatrix = static_cast<
        CNumericDenseMatrix<float>*>(myTakedInFactor->GetMatrix(matTable));
    int n;
    const float* mySmallData;
    mySmallMatrix->GetRawData(&n, &mySmallData);
    int nDims; // = mySmallMatrix->GetNumberDims();
    const int * mySmallRanges;
    mySmallMatrix->GetRanges(&nDims, &mySmallRanges);
    
    if(nDims!=numberOfNodes)
    {
	ret = TRS_FAIL;
	trsWrite(TW_CON|TW_RUN|TW_DEBUG|TW_LST, "nDims = %d\n", nDims);
    }
    else
    {
	int numSmallData = 1;
	for(i=0; i<nDims; i++)
	{
	    numSmallData = numSmallData*mySmallRanges[i];
	    trsWrite(TW_CON|TW_RUN|TW_DEBUG|TW_LST, "Range[%d] = %d\n", i, 
		mySmallRanges[i]);
	}
	for(i=0; i<numSmallData; i++)
	{	
	    trsWrite(TW_CON|TW_RUN|TW_DEBUG|TW_LST, "mySmallData[%d] = %f ",
		i, mySmallData[i]);
	}
    }
#endif
    //getchar();
    delete(myTakedInFactor);
    delete (pMyParam);
    delete pMD;
    //test gaussian parameter
    nodeTypeVector nTypes;
    nTypes.assign( 2, CNodeType() );
    nTypes[0] = CNodeType( 0, 2 );
    nTypes[1] = CNodeType( 0,1 );
    intVector domn = intVector(3,0);
    domn[1] = 1;
    domn[2] = 1;
    
    CModelDomain* pMD1 = CModelDomain::Create( nTypes, domn );
    
    domn[2] = 2;
    
    CPotential *BigFactor = CGaussianPotential::CreateUnitFunctionDistribution( 
	&domn.front(), domn.size(), pMD1,0 );
    float mean[] = { 1.0f, 3.2f};
    CPotential *SmallDelta = CGaussianPotential::CreateDeltaFunction( &domn.front(), 1, pMD1, mean, 1 );
    domn.resize( 2 );
    domn[0] = 1;
    domn[1] = 2;
    CPotential *SmallFunct = CGaussianPotential::Create( &domn.front(),
	domn.size(),  pMD1);
    float datH[] = { 1.1f, 2.2f, 3.3f };
    float datK[] = { 1.2f, 2.3f, 2.3f, 3.4f, 5.6f, 6.7f, 3.4f, 6.7f, 9.0f };
    SmallFunct->AllocMatrix( datH, matH );
    SmallFunct->AllocMatrix( datK, matK );
    static_cast<CGaussianPotential*>(SmallFunct)->SetCoefficient( 0.2f, 1 );
    CPotential* multFact = BigFactor->Multiply( SmallDelta );
    CPotential* nextMultFact = multFact->Multiply( SmallFunct );
    domn[0] = 0;
    domn[1] = 1;
    CPotential *marginalized = static_cast<CPotential*>(nextMultFact->Marginalize( &domn.front(), domn.size() ));
    int isSpecific = marginalized->IsDistributionSpecific();
    if( isSpecific )
    {
	trsWrite(TW_CON|TW_RUN|TW_DEBUG|TW_LST, "\nGaussian Distribution is specific");
    }
    delete BigFactor;
    delete SmallFunct;
    delete SmallDelta;
    delete pMD1;
    
    int ranges_memory_flag = trsGuardCheck(Ranges);
    int data_memory_flag = trsGuardCheck(data);
    int nodeTypesOfDomain_mem_b = trsGuardCheck(nodeTypesOfDomain);
    int ObsNodes_mem_b = trsGuardCheck(ObsNodes);
    int ObsNodeType_mem_b = trsGuardCheck(ObservedNodeType);
    if(((ranges_memory_flag)||(data_memory_flag)||
	(nodeTypesOfDomain_mem_b)||
	(ObsNodes_mem_b)||(ObsNodeType_mem_b)))
    {
	ret = TRS_FAIL;
	return trsResult( ret, ret == TRS_OK ? "No errors" : 
	"Bad test on ShrinkObservedNodes Method - memory");
    }
    else
    {
	trsGuardFree(ObservedNodeType);
	trsGuardFree(ObsNodes);
	trsGuardFree(nodeTypesOfDomain);
	trsGuardFree(data);
	trsGuardFree(Ranges);
    }			
    return trsResult( ret, ret == TRS_OK ? "No errors" : 
    "Bad test on ShrinkObservedNodes Method");
}
Пример #3
0
//-----------------------------------------------------------------------------
CPotential* CSoftMaxCPD::ConvertWithEvidenceToGaussianPotential(
    const CEvidence* pEvidence,
    floatVector MeanContParents, 
    C2DNumericDenseMatrix<float>* CovContParents,
    const int *parentIndices,
    int flagSumOnMixtureNode ) const
{
    int SoftMaxSize = GetSoftMaxSize();
    if (SoftMaxSize != 2)
    {
        PNL_THROW(CNotImplemented, "It is not sigmoid");
    }
    else
    {
        if (m_CorrespDistribFun->GetDistributionType() == dtSoftMax)
        {
            CPotential* pot = ConvertToGaussianPotential(pEvidence, 
                m_CorrespDistribFun, MeanContParents, CovContParents);

            CPotential *pot2 = NULL;

            int domSize = pot->GetDomainSize();
            bool IsAllContUnobserved = true;
            const pConstNodeTypeVector* ntVec = pot->GetDistribFun()->GetNodeTypesVector();
            for( int i = 0; i < domSize-1; i++  )    
            {
              intVector Domain;
              pot->GetDomain(&Domain);
              int curNode =  Domain[i];
              if( (pEvidence->IsNodeObserved(curNode)))
              {
                if( !(*ntVec)[i]->IsDiscrete() )
                {
                  IsAllContUnobserved = false;
                }
              }
            }

            if ((pot->GetDomainSize() >= 3)&&(!IsAllContUnobserved))
            {
              pot2 = pot->ShrinkObservedNodes(pEvidence);
            }
            else
            {
              intVector Domain;
              pot->GetDomain(&Domain);
              pot2 = pot->Marginalize(&(Domain[0]), 1);
            }
            delete pot;
            return pot2;
        }
        else //it means m_CorrespDistribFun->GetDistributionType == dtCondSoftMax
        {
            int i;
            const CSoftMaxDistribFun* dtSM;

            dtSM = 
                static_cast<CCondSoftMaxDistribFun*>(m_CorrespDistribFun)->
                GetDistribution(parentIndices);
            
            intVector pObsNodes;
            pConstValueVector pObsValues;
            pConstNodeTypeVector pNodeTypes;
            pEvidence->GetObsNodesWithValues(&pObsNodes, &pObsValues, &pNodeTypes);
            
            int r = -1;
            for (i = 0; i < pObsNodes.size(); i++)
            {
                if (m_Domain[m_Domain.size()-1] == pObsNodes[i])
                {
                    r = pObsValues[i]->GetInt();
                    break;
                }
            }
            if (r == -1)
            {
                PNL_THROW(CNotImplemented, "Not exist evidence");
            }
            
            CDistribFun *gauFactData = const_cast<CSoftMaxDistribFun*>(dtSM)->
                ConvertCPDDistribFunToPotential(MeanContParents, CovContParents, r);
            
            intVector gauSubDomain;
            const CNodeType *nt;
            for(i = 0; i < m_Domain.size(); i++)
            {
                nt = GetModelDomain()->GetVariableType( m_Domain[i] );
                if(!(nt->IsDiscrete()))
                {
                    gauSubDomain.push_back(m_Domain[i]);
                }
            }
            
            intVector obsIndex;
            for( i = 0; i < gauSubDomain.size(); i++ )
            {
                if( pEvidence->IsNodeObserved(gauSubDomain[i]) )
                {
                    obsIndex.push_back( i );
                }
            }
            
            CGaussianPotential *resFactor = CGaussianPotential::Create(&gauSubDomain.front(), 
                gauSubDomain.size(), GetModelDomain());
            
            resFactor->SetDistribFun( gauFactData );


            CPotential *pot = NULL;

            int domSize = resFactor->GetDomainSize();
            bool IsAllContUnobserved = true;
            const pConstNodeTypeVector* ntVec = resFactor->GetDistribFun()->GetNodeTypesVector();
            for( i = 0; i < domSize-1; i++  )    
            {
              intVector Domain;
              resFactor->GetDomain(&Domain);
              int curNode =  Domain[i];
              if( (pEvidence->IsNodeObserved(curNode)))
              {
                if( !(*ntVec)[i]->IsDiscrete() )
                {
                  IsAllContUnobserved = false;
                }
              }
            }
            if ((resFactor->GetDomainSize() >= 3)&&(!IsAllContUnobserved))
            {
              pot = resFactor->ShrinkObservedNodes(pEvidence);
            }
            else
            {
              intVector Domain;
              resFactor->GetDomain(&Domain);
              pot = resFactor->Marginalize(&(Domain[0]), 1);
            }
            delete resFactor;
            
            delete gauFactData;
            return pot;
            
        }
    }
}
void CJtreeInfEngine::PropagateBetweenClqs(int source, int sink, bool isCollect)
{
    PNL_CHECK_RANGES( source, 0, m_pJTree->GetNumberOfNodes() - 1 );
    PNL_CHECK_RANGES( sink,   0, m_pJTree->GetNumberOfNodes() - 1 );

    if (source == sink)
    {
	PNL_THROW(CInvalidOperation, " source and sink should differ ");
    }

    if (!m_pJTree->GetGraph()->IsExistingEdge(source, sink))
    {
	PNL_THROW(CInvalidOperation,
	    " there is no edge between source and sink ");
    }

    bool isDense = true;
    if(!m_pJTree->GetNodeType(source)->IsDiscrete() || !m_pJTree->GetNodeType(sink)->IsDiscrete())
    {
	isDense = false;
    }
    CPotential *potSource = m_pJTree->GetNodePotential(source),
	*potSink   = m_pJTree->GetNodePotential(sink);

    if(potSource->IsSparse() || potSink->IsSparse())
    {
	isDense = false;
    }

    // check that nodes source and sink are discrete
    if(isDense && !m_bMaximize)
    {
	pnl::CNumericDenseMatrix< float > *sorceMatrix, *sepMatrix, *sinkMatrix;
	int *dims_to_keep, *dims_to_mul;
	int num_dims_to_keep, num_dims_to_mul;

	if (GetDataForMargAndMult(source, sink, &sorceMatrix, &dims_to_keep,
	    num_dims_to_keep, &sepMatrix, &sinkMatrix, &dims_to_mul, num_dims_to_mul))
	{
	    DoPropagate(sorceMatrix, dims_to_keep,
		num_dims_to_keep, sepMatrix, sinkMatrix, dims_to_mul, num_dims_to_mul, isCollect);
	    delete [] dims_to_keep;
	    delete [] dims_to_mul;
	}
	else
	{
	    CPotential *potSink = m_pJTree->GetNodePotential(sink);
	    potSink->Normalize();
	}
    }
    else
    {
	int       numNdsInSepDom;
	const int *sepDom;

	int       numNdsInSDom;
	const int *sDom;
	potSource->GetDomain( &numNdsInSDom, &sDom );
	CPotential *potSep    = m_pJTree->GetSeparatorPotential( source, sink );

	CPotential *newPotSep, *updateRatio;

	potSep->GetDomain( &numNdsInSepDom, &sepDom );

	newPotSep = potSource->Marginalize( sepDom, numNdsInSepDom, m_bMaximize );

	updateRatio = newPotSep->Divide(potSep);

	*potSink *= *updateRatio;

	potSink->Normalize();

	potSep->SetDistribFun(newPotSep->GetDistribFun());

	delete newPotSep;
	delete updateRatio;
    }
}
void CJtreeInfEngine::MarginalNodes( const int *query, int querySz, int notExpandJPD )
{
    // bad-args check
    PNL_CHECK_IS_NULL_POINTER(query);
    PNL_CHECK_RANGES( querySz, 1, m_pGraphicalModel->GetNumberOfNodes() );
    // bad-args check end
    /*
    // the following should be working differently for the case of doing the 
    // whole EnterEvidence procedure or just CollectEvidence for the root node
    if( ( m_lastOpDone != opsDistribute )
    && ( m_lastOpDone != opsMargNodes ) )
    {
    if( m_lastOpDone != opsCollect )
    {
    PNL_THROW( CInvalidOperation,
    " cannot perform marginalization, infEngine inconsistent " );
    }

    int       numOfClqsContQuery;
    const int *clqsContQuery;

    m_pOriginalJTree->GetClqNumsContainingSubset( querySz, query,
    &numOfClqsContQuery, &clqsContQuery );

    PNL_CHECK_FOR_ZERO(numOfClqsContQuery);

    if( std::find( clqsContQuery, clqsContQuery + numOfClqsContQuery,
    m_JTreeRootNode ) == clqsContQuery + numOfClqsContQuery )
    {
    PNL_THROW( CInvalidOperation,
    " cannot marginalize to the non-root-clq nodes set " );
    }

    //////// this is to debug
    for( int i = 0; i < numOfClqsContQuery; ++i )
    {
    CPotential *pJPot = m_pJTree->GetNodePotential(clqsContQuery[i])
    ->Marginalize( query, querySz );

    CPotential *pJPot1 = pJPot->GetNormalized();

    pJPot1->Dump();

    delete pJPot;
    delete pJPot1;
    }
    ///////////////////////////////////////////////////////

    MarginalizeCliqueToQuery( m_JTreeRootNode, querySz, query );

    m_lastOpDone = opsMargNodes;
    }
    else
    {
    */
    int numOfClqsContQuery;
    const int *clqsContQuery;

    m_pJTree->GetClqNumsContainingSubset( querySz, query,
	&numOfClqsContQuery, &clqsContQuery );

    if(numOfClqsContQuery)
    {
	if( std::find( clqsContQuery, clqsContQuery + numOfClqsContQuery,
	    m_JTreeRootNode ) != ( clqsContQuery + numOfClqsContQuery ) )
	{
	    MarginalizeCliqueToQuery( m_JTreeRootNode, querySz, query, notExpandJPD );
	}
	else
	{
	    MarginalizeCliqueToQuery( *clqsContQuery, querySz, query, notExpandJPD );
	}
    }
    else
    {
	const int* clqDomain;
	int   clqSize;
	CPotential *resPot = NULL;
	delete m_pQueryJPD;
	m_pQueryJPD = NULL;

	ShrinkJTreeCliques(querySz, const_cast<int*>(query));
	resPot = MergeCliques(querySz, const_cast<int*>(query));
	resPot->GetDomain(&clqSize, &clqDomain);
	if( !pnlIsIdentical(querySz, const_cast<int*>(query), clqSize, const_cast<int*>(clqDomain)) )
	{
	    m_pQueryJPD = resPot->Marginalize(const_cast<int*>(query), querySz);
	}
	else
	{
	    m_pQueryJPD = static_cast<CPotential*>(resPot->Clone());
	}
	m_pQueryJPD->Normalize();
	delete resPot;
    }
}
CPotential* CJtreeInfEngine::MergeCliques(int domSize, int* Domain)
{
    int numNodes = m_pJTree->GetNumberOfNodes();
    potsPVector	vPots(numNodes, (CPotential*)0);
    int i;
    const int*  clqDomain;
    int			clqSize;
    const int*  sepDomain;
    int			sepSize;

    const int    *nbr, *nbrs_end;
    int          numOfNbrs;
    const int    *nbrs;
    const ENeighborType *nbrsTypes;

    intVector::const_iterator    sourceIt, source_end;
    intVecVector::const_iterator layerIt     = m_collectSequence.begin(),
	collSeq_end = m_collectSequence.end();

    const CGraph *pGraph = m_pJTree->GetGraph();

    intVector  nodesSentMessages;
    intVector  tmpV;

    for( ; layerIt != collSeq_end; ++layerIt )
    {
	for( sourceIt = layerIt->begin(), source_end = layerIt->end();
	    sourceIt != source_end; ++sourceIt )
	{
	    if( !m_NodesAfterShrink[*sourceIt] ) continue;

	    pGraph->GetNeighbors( *sourceIt, &numOfNbrs, &nbrs, &nbrsTypes );
	    tmpV.assign(Domain, Domain+domSize);

	    for( nbr = nbrs, nbrs_end = nbrs + numOfNbrs; nbr != nbrs_end;
		++nbr )
	    {
		if( !m_NodesAfterShrink[*nbr] ) continue;
		m_pJTree->GetSeparatorDomain(*sourceIt, *nbr, &sepSize, &sepDomain);
		tmpV = pnlSetUnion(sepSize, const_cast<int*>(sepDomain), tmpV.size(), &tmpV.front());
	    }
	    m_pJTree->GetNodeContent(*sourceIt, &clqSize, &clqDomain);
	    tmpV = pnlIntersect(clqSize, const_cast<int*>(clqDomain), tmpV.size(), &tmpV.front());
	    if( !pnlIsIdentical(tmpV.size(), &tmpV.front(), clqSize, const_cast<int*>(clqDomain)) )
	    {
		vPots[*sourceIt] = m_pJTree->GetNodePotential(*sourceIt)->Marginalize(tmpV);
	    }
	    else
	    {
		vPots[*sourceIt] = static_cast<CPotential*>(m_pJTree->GetNodePotential(*sourceIt)->Clone());
	    }
	}
    }

    intVector bigDomain;
    layerIt = m_collectSequence.begin();
    nodesSentMessages.assign(numNodes, false);
    CPotential* tPot;
    for( ; layerIt != collSeq_end; ++layerIt )
    {
	for( sourceIt = layerIt->begin(), source_end = layerIt->end();
	    sourceIt != source_end; ++sourceIt )
	{
	    if( !m_NodesAfterShrink[*sourceIt] )continue;
	    pGraph->GetNeighbors( *sourceIt, &numOfNbrs, &nbrs, &nbrsTypes );
	    for( nbr = nbrs, nbrs_end = nbrs + numOfNbrs; nbr != nbrs_end; ++nbr )
	    {
		if( !nodesSentMessages[*nbr] && m_NodesAfterShrink[*nbr] )
		{
		    CPotential* pPot = vPots[*nbr];
		    CPotential* cPot = vPots[*sourceIt];
		    CPotential* bigPot = pnlMultiply(pPot, cPot, GetModel()->GetModelDomain());
		    *bigPot /=  *(m_pJTree->GetSeparatorPotential(*sourceIt, *nbr));
		    m_NodesAfterShrink[*sourceIt] = false;

		    int                 numOfNbrs1;
		    const int           *nbrs1, *nbr1, *nbrs1_end;
		    const ENeighborType *nbrsTypes1;

		    pGraph->GetNeighbors( *nbr, &numOfNbrs1, &nbrs1, &nbrsTypes1 );
		    tmpV.assign(Domain, Domain+domSize);
		    for(nbr1 = nbrs1, nbrs1_end = nbrs1 + numOfNbrs1; nbr1 != nbrs1_end; ++nbr1 )
		    {
			if( !m_NodesAfterShrink[*nbr1] ) continue;
			m_pJTree->GetSeparatorDomain(*nbr, *nbr1, &sepSize, &sepDomain);
			tmpV = pnlSetUnion(sepSize, const_cast<int*>(sepDomain), tmpV.size(), &tmpV.front());
		    }
		    bigPot->GetDomain(&bigDomain);
		    tmpV = pnlIntersect(tmpV.size(), &tmpV.front(), bigDomain.size(), &bigDomain.front());
		    if( tmpV.size() < bigDomain.size() )
		    {
			tPot = bigPot->Marginalize(&tmpV.front(), tmpV.size());
			delete bigPot;
			bigPot = tPot;
		    }
		    delete vPots[*nbr];
		    vPots[*nbr] = bigPot;
		    bigPot->GetDomain(&bigDomain);
		    if( pnlIsSubset(domSize, Domain, bigDomain.size(), &bigDomain.front()) )
		    {
			CPotential* retPot = static_cast<CPotential*>(bigPot->Clone());
			for(i=0; i<numNodes; i++)
			{
			    delete vPots[i];
			}
			vPots.clear();
			m_NodesAfterShrink.clear();
			return retPot;
		    }
		}
		nodesSentMessages[*sourceIt] = true;
	    }
	}
    }
    PNL_THROW(CInternalError, "internal error");
}
int CJtreeInfEngine::GetDataForMargAndMult(const int source, const int sink,
					   pnl::CNumericDenseMatrix< float > **sorceMatrix, int **dims_to_keep,
					   int &num_dims_to_keep, pnl::CNumericDenseMatrix< float > **sepMatrix, 
					   pnl::CNumericDenseMatrix< float > **sinkMatrix, int **dims_to_mul,
					   int &num_dims_to_mul)
{
    // bad-args check
    PNL_CHECK_RANGES(source, 0, m_pJTree->GetNumberOfNodes() - 1);
    PNL_CHECK_RANGES(sink, 0, m_pJTree->GetNumberOfNodes() - 1);
    // bad-args check end

    if (source == sink)
    {
	PNL_THROW(CInvalidOperation, " source and sink should differ ");
    }
    if (!m_pJTree->GetGraph()->IsExistingEdge(source, sink))
    {
	PNL_THROW(CInvalidOperation, " there is no edge between source and sink");
    }

    CPotential *potSource = m_pJTree->GetNodePotential(source),
	*potSink   = m_pJTree->GetNodePotential(sink);

    int numNdsInSourceDom, numNdsInSinkDom;
    const int *sourceDom, *sinkDom;
    potSource->GetDomain(&numNdsInSourceDom, &sourceDom);
    potSink->GetDomain(&numNdsInSinkDom, &sinkDom);

    CPotential *potSep = m_pJTree->GetSeparatorPotential(source, sink);
    int numNdsInSepDom;
    const int *sepDom;
    potSep->GetDomain(&numNdsInSepDom, &sepDom);

    EDistributionType sepDistType = potSep->GetDistributionType();

    num_dims_to_keep = numNdsInSepDom;
    *dims_to_keep = new int [num_dims_to_keep];

    int* pEquivPos;
    for (int i = 0; i < numNdsInSepDom; i++)
    {
	pEquivPos = (int*)std::find(sourceDom, sourceDom + numNdsInSourceDom, sepDom[i]);
	if (pEquivPos != sourceDom + numNdsInSourceDom)
	{
	    (*dims_to_keep)[i] = (pEquivPos - sourceDom);
	}
	else 
	{
	    PNL_THROW( CInconsistentSize, "small domain isn't subset of domain")
		return 0;
	}
	//check that pSmallDom is m_Domain's subset
    }
    switch (sepDistType)
    {
    case dtTabular:
	{
	    CDistribFun *sepDistrFun = potSep -> GetDistribFun();
	    CDistribFun *sourceDistrFun = potSource -> GetDistribFun();
	    CDistribFun *sinkDistrFun = potSink -> GetDistribFun();
	    if (!sourceDistrFun->IsValid())
	    {
		PNL_THROW( CInconsistentType, "MarginalizeData is invalid" )
	    }

	    //check if distribution of potSource is Unit Function - do nothing
	    if(sourceDistrFun->IsDistributionSpecific())
	    {
		return 0;
	    }

	    if ( sepDistrFun->IsDistributionSpecific() )
	    {
		sepDistrFun->SetUnitValue(0);
	    }


	    *sorceMatrix = static_cast<CNumericDenseMatrix<float> *>(sourceDistrFun->
		GetMatrix(matTable));
	    *sepMatrix = static_cast<CNumericDenseMatrix<float> *>(sepDistrFun->
		GetMatrix(matTable));

	    EDistributionType dtsink = sinkDistrFun->GetDistributionType();
	    if ((dtsink != dtTabular) && (dtsink != dtScalar))
	    {
		PNL_THROW(CInvalidOperation, "we can multiply only tabulars")
	    }

	    int location;
	    num_dims_to_mul = numNdsInSepDom;
	    *dims_to_mul = new int [num_dims_to_mul];

	    for (int i = 0; i < numNdsInSepDom; i++)
	    {
		location = 
		    std::find(sinkDom, sinkDom + numNdsInSinkDom, sepDom[i]) - sinkDom;
		if (location < numNdsInSinkDom)
		{
		    (*dims_to_mul)[i] = location;
		}
	    }

	    if(sinkDistrFun->IsDistributionSpecific())
	    {
		sinkDistrFun->SetUnitValue(0);
		floatVector *aValue = 
		    (floatVector *)((CDenseMatrix<float>*)sinkDistrFun->
		    GetMatrix(matTable))->GetVector();
		aValue->assign(aValue->size(), 1.0f);
	    }

	    *sinkMatrix = static_cast<CNumericDenseMatrix<float>*>(sinkDistrFun->
		GetMatrix(matTable));

	    break;
	}
    case dtScalar:
	{
	    // propagate isn't need
	    return 0;
	}
    default:
	{
	    PNL_THROW(CNotImplemented, "we have only Tabular now");
	    return 0;
	}
    }

    if (numNdsInSepDom == 0)
    {
	PNL_THROW(COutOfRange, "domain size should be positive");
    }
    return 1;
}