/// Generate a thunk that puts the LSDA of ParentFunc in EAX and then calls /// PersonalityFn, forwarding the parameters passed to PEXCEPTION_ROUTINE: /// typedef _EXCEPTION_DISPOSITION (*PEXCEPTION_ROUTINE)( /// _EXCEPTION_RECORD *, void *, _CONTEXT *, void *); /// We essentially want this code: /// movl $lsda, %eax /// jmpl ___CxxFrameHandler3 Function *WinEHStatePass::generateLSDAInEAXThunk(Function *ParentFunc) { LLVMContext &Context = ParentFunc->getContext(); Type *Int32Ty = Type::getInt32Ty(Context); Type *Int8PtrType = Type::getInt8PtrTy(Context); Type *ArgTys[5] = {Int8PtrType, Int8PtrType, Int8PtrType, Int8PtrType, Int8PtrType}; FunctionType *TrampolineTy = FunctionType::get(Int32Ty, makeArrayRef(&ArgTys[0], 4), /*isVarArg=*/false); FunctionType *TargetFuncTy = FunctionType::get(Int32Ty, makeArrayRef(&ArgTys[0], 5), /*isVarArg=*/false); Function *Trampoline = Function::Create( TrampolineTy, GlobalValue::InternalLinkage, Twine("__ehhandler$") + ParentFunc->getName(), TheModule); BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", Trampoline); IRBuilder<> Builder(EntryBB); Value *LSDA = emitEHLSDA(Builder, ParentFunc); Value *CastPersonality = Builder.CreateBitCast(PersonalityFn, TargetFuncTy->getPointerTo()); auto AI = Trampoline->arg_begin(); Value *Args[5] = {LSDA, AI++, AI++, AI++, AI++}; CallInst *Call = Builder.CreateCall(CastPersonality, Args); // Can't use musttail due to prototype mismatch, but we can use tail. Call->setTailCall(true); // Set inreg so we pass it in EAX. Call->addAttribute(1, Attribute::InReg); Builder.CreateRet(Call); return Trampoline; }
std::pair<Value *, Value *> AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { if (!IsAMDHSA) { Function *LocalSizeYFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); Function *LocalSizeZFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); return std::make_pair(LocalSizeY, LocalSizeZ); } // We must read the size out of the dispatch pointer. assert(IsAMDGCN); // We are indexing into this struct, and want to extract the workgroup_size_* // fields. // // typedef struct hsa_kernel_dispatch_packet_s { // uint16_t header; // uint16_t setup; // uint16_t workgroup_size_x ; // uint16_t workgroup_size_y; // uint16_t workgroup_size_z; // uint16_t reserved0; // uint32_t grid_size_x ; // uint32_t grid_size_y ; // uint32_t grid_size_z; // // uint32_t private_segment_size; // uint32_t group_segment_size; // uint64_t kernel_object; // // #ifdef HSA_LARGE_MODEL // void *kernarg_address; // #elif defined HSA_LITTLE_ENDIAN // void *kernarg_address; // uint32_t reserved1; // #else // uint32_t reserved1; // void *kernarg_address; // #endif // uint64_t reserved2; // hsa_signal_t completion_signal; // uint64_t wrapper // } hsa_kernel_dispatch_packet_t // Function *DispatchPtrFn = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); // Size of the dispatch packet struct. DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); Type *I32Ty = Type::getInt32Ty(Mod->getContext()); Value *CastDispatchPtr = Builder.CreateBitCast( DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); // We could do a single 64-bit load here, but it's likely that the basic // 32-bit and extract sequence is already present, and it is probably easier // to CSE this. The loads should be mergable later anyway. Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); // Extract y component. Upper half of LoadZU should be zero already. Value *Y = Builder.CreateLShr(LoadXY, 16); return std::make_pair(Y, LoadZU); }
bool AMDGPULowerKernelArguments::runOnFunction(Function &F) { CallingConv::ID CC = F.getCallingConv(); if (CC != CallingConv::AMDGPU_KERNEL || F.arg_empty()) return false; auto &TPC = getAnalysis<TargetPassConfig>(); const TargetMachine &TM = TPC.getTM<TargetMachine>(); const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); LLVMContext &Ctx = F.getParent()->getContext(); const DataLayout &DL = F.getParent()->getDataLayout(); BasicBlock &EntryBlock = *F.begin(); IRBuilder<> Builder(&*EntryBlock.begin()); const unsigned KernArgBaseAlign = 16; // FIXME: Increase if necessary const uint64_t BaseOffset = ST.getExplicitKernelArgOffset(F); unsigned MaxAlign; // FIXME: Alignment is broken broken with explicit arg offset.; const uint64_t TotalKernArgSize = ST.getKernArgSegmentSize(F, MaxAlign); if (TotalKernArgSize == 0) return false; CallInst *KernArgSegment = Builder.CreateIntrinsic(Intrinsic::amdgcn_kernarg_segment_ptr, {}, {}, nullptr, F.getName() + ".kernarg.segment"); KernArgSegment->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); KernArgSegment->addAttribute(AttributeList::ReturnIndex, Attribute::getWithDereferenceableBytes(Ctx, TotalKernArgSize)); unsigned AS = KernArgSegment->getType()->getPointerAddressSpace(); uint64_t ExplicitArgOffset = 0; for (Argument &Arg : F.args()) { Type *ArgTy = Arg.getType(); unsigned Align = DL.getABITypeAlignment(ArgTy); unsigned Size = DL.getTypeSizeInBits(ArgTy); unsigned AllocSize = DL.getTypeAllocSize(ArgTy); uint64_t EltOffset = alignTo(ExplicitArgOffset, Align) + BaseOffset; ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; if (Arg.use_empty()) continue; if (PointerType *PT = dyn_cast<PointerType>(ArgTy)) { // FIXME: Hack. We rely on AssertZext to be able to fold DS addressing // modes on SI to know the high bits are 0 so pointer adds don't wrap. We // can't represent this with range metadata because it's only allowed for // integer types. if ((PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || PT->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) && ST.getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) continue; // FIXME: We can replace this with equivalent alias.scope/noalias // metadata, but this appears to be a lot of work. if (Arg.hasNoAliasAttr()) continue; } VectorType *VT = dyn_cast<VectorType>(ArgTy); bool IsV3 = VT && VT->getNumElements() == 3; bool DoShiftOpt = Size < 32 && !ArgTy->isAggregateType(); VectorType *V4Ty = nullptr; int64_t AlignDownOffset = alignDown(EltOffset, 4); int64_t OffsetDiff = EltOffset - AlignDownOffset; unsigned AdjustedAlign = MinAlign(DoShiftOpt ? AlignDownOffset : EltOffset, KernArgBaseAlign); Value *ArgPtr; Type *AdjustedArgTy; if (DoShiftOpt) { // FIXME: Handle aggregate types // Since we don't have sub-dword scalar loads, avoid doing an extload by // loading earlier than the argument address, and extracting the relevant // bits. // // Additionally widen any sub-dword load to i32 even if suitably aligned, // so that CSE between different argument loads works easily. ArgPtr = Builder.CreateConstInBoundsGEP1_64( Builder.getInt8Ty(), KernArgSegment, AlignDownOffset, Arg.getName() + ".kernarg.offset.align.down"); AdjustedArgTy = Builder.getInt32Ty(); } else { ArgPtr = Builder.CreateConstInBoundsGEP1_64( Builder.getInt8Ty(), KernArgSegment, EltOffset, Arg.getName() + ".kernarg.offset"); AdjustedArgTy = ArgTy; } if (IsV3 && Size >= 32) { V4Ty = VectorType::get(VT->getVectorElementType(), 4); // Use the hack that clang uses to avoid SelectionDAG ruining v3 loads AdjustedArgTy = V4Ty; } ArgPtr = Builder.CreateBitCast(ArgPtr, AdjustedArgTy->getPointerTo(AS), ArgPtr->getName() + ".cast"); LoadInst *Load = Builder.CreateAlignedLoad(AdjustedArgTy, ArgPtr, AdjustedAlign); Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(Ctx, {})); MDBuilder MDB(Ctx); if (isa<PointerType>(ArgTy)) { if (Arg.hasNonNullAttr()) Load->setMetadata(LLVMContext::MD_nonnull, MDNode::get(Ctx, {})); uint64_t DerefBytes = Arg.getDereferenceableBytes(); if (DerefBytes != 0) { Load->setMetadata( LLVMContext::MD_dereferenceable, MDNode::get(Ctx, MDB.createConstant( ConstantInt::get(Builder.getInt64Ty(), DerefBytes)))); } uint64_t DerefOrNullBytes = Arg.getDereferenceableOrNullBytes(); if (DerefOrNullBytes != 0) { Load->setMetadata( LLVMContext::MD_dereferenceable_or_null, MDNode::get(Ctx, MDB.createConstant(ConstantInt::get(Builder.getInt64Ty(), DerefOrNullBytes)))); } unsigned ParamAlign = Arg.getParamAlignment(); if (ParamAlign != 0) { Load->setMetadata( LLVMContext::MD_align, MDNode::get(Ctx, MDB.createConstant(ConstantInt::get(Builder.getInt64Ty(), ParamAlign)))); } } // TODO: Convert noalias arg to !noalias if (DoShiftOpt) { Value *ExtractBits = OffsetDiff == 0 ? Load : Builder.CreateLShr(Load, OffsetDiff * 8); IntegerType *ArgIntTy = Builder.getIntNTy(Size); Value *Trunc = Builder.CreateTrunc(ExtractBits, ArgIntTy); Value *NewVal = Builder.CreateBitCast(Trunc, ArgTy, Arg.getName() + ".load"); Arg.replaceAllUsesWith(NewVal); } else if (IsV3) { Value *Shuf = Builder.CreateShuffleVector(Load, UndefValue::get(V4Ty), {0, 1, 2}, Arg.getName() + ".load"); Arg.replaceAllUsesWith(Shuf); } else { Load->setName(Arg.getName() + ".load"); Arg.replaceAllUsesWith(Load); } } KernArgSegment->addAttribute( AttributeList::ReturnIndex, Attribute::getWithAlignment(Ctx, std::max(KernArgBaseAlign, MaxAlign))); return true; }