Пример #1
0
int main(int argc, const char *argv[])
{
     try {
          // Empty model
          ClpSimplex  model;

          // Objective - just nonzeros
          int objIndex[] = {0, 2};
          double objValue[] = {1.0, 4.0};
          // Upper bounds - as dense vector
          double upper[] = {2.0, COIN_DBL_MAX, 4.0};

          // Create space for 3 columns
          model.resize(0, 3);
          // Fill in
          int i;
          // Virtuous way
          // First objective
          for (i = 0; i < 2; i++)
               model.setObjectiveCoefficient(objIndex[i], objValue[i]);
          // Now bounds (lower will be zero by default but do again)
          for (i = 0; i < 3; i++) {
               model.setColumnLower(i, 0.0);
               model.setColumnUpper(i, upper[i]);
          }
          /*
            We could also have done in non-virtuous way e.g.
            double * objective = model.objective();
            and then set directly
          */
          // Faster to add rows all at once - but this is easier to show
          // Now add row 1 as >= 2.0
          int row1Index[] = {0, 2};
          double row1Value[] = {1.0, 1.0};
          model.addRow(2, row1Index, row1Value,
                       2.0, COIN_DBL_MAX);
          // Now add row 2 as == 1.0
          int row2Index[] = {0, 1, 2};
          double row2Value[] = {1.0, -5.0, 1.0};
          model.addRow(3, row2Index, row2Value,
                       1.0, 1.0);
          // solve
          model.dual();

          /*
            Adding one row at a time has a significant overhead so let's
            try a more complicated but faster way

            First time adding in 10000 rows one by one
          */
          model.allSlackBasis();
          ClpSimplex modelSave = model;
          double time1 = CoinCpuTime();
          int k;
          for (k = 0; k < 10000; k++) {
               int row2Index[] = {0, 1, 2};
               double row2Value[] = {1.0, -5.0, 1.0};
               model.addRow(3, row2Index, row2Value,
                            1.0, 1.0);
          }
          printf("Time for 10000 addRow is %g\n", CoinCpuTime() - time1);
          model.dual();
          model = modelSave;
          // Now use build
          CoinBuild buildObject;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int row2Index[] = {0, 1, 2};
               double row2Value[] = {1.0, -5.0, 1.0};
               buildObject.addRow(3, row2Index, row2Value,
                                  1.0, 1.0);
          }
          model.addRows(buildObject);
          printf("Time for 10000 addRow using CoinBuild is %g\n", CoinCpuTime() - time1);
          model.dual();
          model = modelSave;
          int del[] = {0, 1, 2};
          model.deleteRows(2, del);
          // Now use build +-1
          CoinBuild buildObject2;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int row2Index[] = {0, 1, 2};
               double row2Value[] = {1.0, -1.0, 1.0};
               buildObject2.addRow(3, row2Index, row2Value,
                                   1.0, 1.0);
          }
          model.addRows(buildObject2, true);
          printf("Time for 10000 addRow using CoinBuild+-1 is %g\n", CoinCpuTime() - time1);
          model.dual();
          model = modelSave;
          model.deleteRows(2, del);
          // Now use build +-1
          CoinModel modelObject2;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int row2Index[] = {0, 1, 2};
               double row2Value[] = {1.0, -1.0, 1.0};
               modelObject2.addRow(3, row2Index, row2Value,
                                   1.0, 1.0);
          }
          model.addRows(modelObject2, true);
          printf("Time for 10000 addRow using CoinModel+-1 is %g\n", CoinCpuTime() - time1);
          model.dual();
          model = ClpSimplex();
          // Now use build +-1
          CoinModel modelObject3;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int row2Index[] = {0, 1, 2};
               double row2Value[] = {1.0, -1.0, 1.0};
               modelObject3.addRow(3, row2Index, row2Value,
                                   1.0, 1.0);
          }
          model.loadProblem(modelObject3, true);
          printf("Time for 10000 addRow using CoinModel load +-1 is %g\n", CoinCpuTime() - time1);
          model.writeMps("xx.mps");
          model.dual();
          model = modelSave;
          // Now use model
          CoinModel modelObject;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int row2Index[] = {0, 1, 2};
               double row2Value[] = {1.0, -5.0, 1.0};
               modelObject.addRow(3, row2Index, row2Value,
                                  1.0, 1.0);
          }
          model.addRows(modelObject);
          printf("Time for 10000 addRow using CoinModel is %g\n", CoinCpuTime() - time1);
          model.dual();
          model.writeMps("b.mps");
          // Method using least memory - but most complicated
          time1 = CoinCpuTime();
          // Assumes we know exact size of model and matrix
          // Empty model
          ClpSimplex  model2;
          {
               // Create space for 3 columns and 10000 rows
               int numberRows = 10000;
               int numberColumns = 3;
               // This is fully dense - but would not normally be so
               int numberElements = numberRows * numberColumns;
               // Arrays will be set to default values
               model2.resize(numberRows, numberColumns);
               double * elements = new double [numberElements];
               CoinBigIndex * starts = new CoinBigIndex [numberColumns+1];
               int * rows = new int [numberElements];;
               int * lengths = new int[numberColumns];
               // Now fill in - totally unsafe but ....
               // no need as defaults to 0.0 double * columnLower = model2.columnLower();
               double * columnUpper = model2.columnUpper();
               double * objective = model2.objective();
               double * rowLower = model2.rowLower();
               double * rowUpper = model2.rowUpper();
               // Columns - objective was packed
               for (k = 0; k < 2; k++) {
                    int iColumn = objIndex[k];
                    objective[iColumn] = objValue[k];
               }
               for (k = 0; k < numberColumns; k++)
                    columnUpper[k] = upper[k];
               // Rows
               for (k = 0; k < numberRows; k++) {
                    rowLower[k] = 1.0;
                    rowUpper[k] = 1.0;
               }
               // Now elements
               double row2Value[] = {1.0, -5.0, 1.0};
               CoinBigIndex put = 0;
               for (k = 0; k < numberColumns; k++) {
                    starts[k] = put;
                    lengths[k] = numberRows;
                    double value = row2Value[k];
                    for (int i = 0; i < numberRows; i++) {
                         rows[put] = i;
                         elements[put] = value;
                         put++;
                    }
               }
               starts[numberColumns] = put;
               // assign to matrix
               CoinPackedMatrix * matrix = new CoinPackedMatrix(true, 0.0, 0.0);
               matrix->assignMatrix(true, numberRows, numberColumns, numberElements,
                                    elements, rows, starts, lengths);
               ClpPackedMatrix * clpMatrix = new ClpPackedMatrix(matrix);
               model2.replaceMatrix(clpMatrix, true);
               printf("Time for 10000 addRow using hand written code is %g\n", CoinCpuTime() - time1);
               // If matrix is really big could switch off creation of row copy
               // model2.setSpecialOptions(256);
          }
          model2.dual();
          model2.writeMps("a.mps");
          // Print column solution
          int numberColumns = model.numberColumns();

          // Alternatively getColSolution()
          double * columnPrimal = model.primalColumnSolution();
          // Alternatively getReducedCost()
          double * columnDual = model.dualColumnSolution();
          // Alternatively getColLower()
          double * columnLower = model.columnLower();
          // Alternatively getColUpper()
          double * columnUpper = model.columnUpper();
          // Alternatively getObjCoefficients()
          double * columnObjective = model.objective();

          int iColumn;

          std::cout << "               Primal          Dual         Lower         Upper          Cost"
                    << std::endl;

          for (iColumn = 0; iColumn < numberColumns; iColumn++) {
               double value;
               std::cout << std::setw(6) << iColumn << " ";
               value = columnPrimal[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnDual[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnLower[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnUpper[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnObjective[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value;

               std::cout << std::endl;
          }
          std::cout << "--------------------------------------" << std::endl;
          // Test CoinAssert
          std::cout << "If Clp compiled with -g below should give assert, if with -O1 or COIN_ASSERT CoinError" << std::endl;
          model = modelSave;
          model.deleteRows(2, del);
          // Deliberate error
          model.deleteColumns(1, del + 2);
          // Now use build +-1
          CoinBuild buildObject3;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int row2Index[] = {0, 1, 2};
               double row2Value[] = {1.0, -1.0, 1.0};
               buildObject3.addRow(3, row2Index, row2Value,
                                   1.0, 1.0);
          }
          model.addRows(buildObject3, true);
     } catch (CoinError e) {
          e.print();
          if (e.lineNumber() >= 0)
               std::cout << "This was from a CoinAssert" << std::endl;
     }
     return 0;
}
Пример #2
0
static int solve(EKKModel * model, int  startup, int algorithm,
                 int presolve)
{
     // values pass or not
     if (startup)
          startup = 1;
     // if scaled then be careful
     bool scaled = ekk_scaling(model) == 1;
     if (scaled)
          ekk_scaleRim(model, 1);
     void * compressInfo = NULL;
     ClpSimplex * clp;
     if (!presolve || !presolveInfo) {
          // no presolve or osl presolve - compact columns
          compressInfo = ekk_compressModel(model);
          clp = clpmodel(model, startup);;
     } else {
          // pick up clp model
          clp = presolveInfo->model();
     }

     // don't scale if alreday scaled
     if (scaled)
          clp->scaling(false);
     if (clp->numberRows() > 10000)
          clp->factorization()->maximumPivots(100 + clp->numberRows() / 100);
     if (algorithm > 0)
          clp->primal(startup);
     else
          clp->dual();

     int numberIterations = clp->numberIterations();
     if (presolve && presolveInfo) {
          // very wasteful - create a clp copy of osl model
          ClpSimplex * clpOriginal = clpmodel(model, 0);
          presolveInfo->setOriginalModel(clpOriginal);
          // do postsolve
          presolveInfo->postsolve(true);
          delete clp;
          delete presolveInfo;
          presolveInfo = NULL;
          clp = clpOriginal;
          if (presolve == 3 || (presolve == 2 && clp->status())) {
               printf("Resolving from postsolved model\n");
               clp->primal(1);
               numberIterations += clp->numberIterations();
          }
     }

     // put back solution

     double * rowDual = (double *) ekk_rowduals(model);
     int numberRows = ekk_getInumrows(model);
     int numberColumns = ekk_getInumcols(model);
     int * rowStatus = (int *) ekk_rowstat(model);
     double * rowSolution = (double *) ekk_rowacts(model);
     int i;
     int * columnStatus = (int *) ekk_colstat(model);
     double * columnSolution = (double *) ekk_colsol(model);
     memcpy(rowSolution, clp->primalRowSolution(), numberRows * sizeof(double));
     memcpy(rowDual, clp->dualRowSolution(), numberRows * sizeof(double));
     for (i = 0; i < numberRows; i++) {
          if (clp->getRowStatus(i) == ClpSimplex::basic)
               rowStatus[i] = 0x80000000;
          else
               rowStatus[i] = 0;
     }

     double * columnDual = (double *) ekk_colrcosts(model);
     memcpy(columnSolution, clp->primalColumnSolution(),
            numberColumns * sizeof(double));
     memcpy(columnDual, clp->dualColumnSolution(), numberColumns * sizeof(double));
     for (i = 0; i < numberColumns; i++) {
          if (clp->getColumnStatus(i) == ClpSimplex::basic)
               columnStatus[i] = 0x80000000;
          else
               columnStatus[i] = 0;
     }
     ekk_setIprobstat(model, clp->status());
     ekk_setRobjvalue(model, clp->objectiveValue());
     ekk_setInumpinf(model, clp->numberPrimalInfeasibilities());
     ekk_setInumdinf(model, clp->numberDualInfeasibilities());
     ekk_setIiternum(model, numberIterations);
     ekk_setRsumpinf(model, clp->sumPrimalInfeasibilities());
     ekk_setRsumdinf(model, clp->sumDualInfeasibilities());
     delete clp;
     if (compressInfo)
          ekk_decompressModel(model, compressInfo);

     if (scaled)
          ekk_scaleRim(model, 2);
     return 0;
}
Пример #3
0
// To define the function sciclp as a C function and allow this function to be loaded easily in scilab
extern "C" int sciclp(char * fname)
{
  ClpSimplex      * modelSimplex  = NULL;
  ClpInterior     * modelInterior = NULL;
  ClpModel        * modelBase     = NULL;
  ClpCholeskyBase * cholesky      = NULL; 
  DerivedHandler  * printer       = NULL;
  ClpSolve          modelSolve; // YC: we can set some parameters via CbcSolve
  CoinPackedMatrix  A_matrix, Q_matrix;
#ifdef HANDLE_CTRLC
  MyClpEventHandler SciClpEventHandler;
  SciClpEventHandler.setInCbc(false);
#endif
  int Log = 0;
  int ncols = 0, nrows = 0, i, j, nz = 0, writemps = 0;
  int count = 0, status = 0, type;
  char  * writemps_filename = NULL;
  SciSparse S_A, S_Q;
  
  if (Rhs<LASTPARAM) 
    {
      Scierror(999,"%s: 12 inputs required in call to %s. Bug in clp.sci ?...\n", fname, fname);
      return 0;
    }
		
  /* Get pointers to input */

  int n_a,     m_a,     * a_addr     = NULL;
  int n_c,     m_c,     * c_addr     = NULL;
  int n_lhs,   m_lhs,   * lhs_addr   = NULL;
  int n_rhs,   m_rhs,   * rhs_addr   = NULL;
  int n_upper, m_upper, * upper_addr = NULL;
  int n_lower, m_lower, * lower_addr = NULL;
  int * vtype_addr = NULL;
  int * ctype_addr = NULL;
  int n_q,     m_q,     * q_addr     = NULL;
  double * c = NULL, * lhs = NULL, * rhs = NULL, * lower = NULL, * upper = NULL, * a = NULL;
  double * q = NULL;
  char * ctype = NULL, * vtype = NULL;
  SciErr _SciErr;
  
  _SciErr = getVarAddressFromPosition(pvApiCtx, C_IN, &c_addr); SCICOINOR_ERROR;
  _SciErr = getMatrixOfDouble(pvApiCtx, c_addr, &n_c, &m_c, &c); SCICOINOR_ERROR;
  _SciErr = getVarAddressFromPosition(pvApiCtx, LHS_IN, &lhs_addr); SCICOINOR_ERROR;
  _SciErr = getMatrixOfDouble(pvApiCtx, lhs_addr, &n_lhs, &m_lhs, &lhs); SCICOINOR_ERROR;
  _SciErr = getVarAddressFromPosition(pvApiCtx, RHS_IN, &rhs_addr); SCICOINOR_ERROR;
  _SciErr = getMatrixOfDouble(pvApiCtx, rhs_addr, &n_rhs, &m_rhs, &rhs); SCICOINOR_ERROR;
  _SciErr = getVarAddressFromPosition(pvApiCtx, LOWER_IN, &lower_addr); SCICOINOR_ERROR;
  _SciErr = getMatrixOfDouble(pvApiCtx, lower_addr, &n_lower, &m_lower, &lower); SCICOINOR_ERROR;
  _SciErr = getVarAddressFromPosition(pvApiCtx, UPPER_IN, &upper_addr); SCICOINOR_ERROR;
  _SciErr = getMatrixOfDouble(pvApiCtx, upper_addr, &n_upper, &m_upper, &upper); SCICOINOR_ERROR;
  _SciErr = getVarAddressFromPosition(pvApiCtx, CTYPE_IN, &ctype_addr); SCICOINOR_ERROR;
  getAllocatedSingleString(pvApiCtx, ctype_addr, &ctype);
  _SciErr = getVarAddressFromPosition(pvApiCtx, VTYPE_IN, &vtype_addr); SCICOINOR_ERROR;
  getAllocatedSingleString(pvApiCtx, vtype_addr, &vtype);

  ncols = n_c   * m_c;   /* Length of c == number of columns */
  nrows = n_rhs * m_rhs; /* length of b == number of rows    */
  if (nrows==0) nrows = n_lhs * m_lhs;

#ifdef DEBUG
  sciprint("DEBUG: c           size: m = %d n = %d\n", m_c,     n_c);
  sciprint("DEBUG: lhs         size: m = %d n = %d\n", m_lhs,   n_lhs);
  sciprint("DEBUG: rhs         size: m = %d n = %d\n", m_rhs,   n_rhs);
  sciprint("DEBUG: lower       size: m = %d n = %d\n", m_lower, n_lower);
  sciprint("DEBUG: upper       size: m = %d n = %d\n", m_upper, n_upper);
  sciprint("DEBUG: ctype       size: m = %d n = %d\n", m_ctype, n_ctype);
  sciprint("DEBUG: vtype       size: m = %d n = %d\n", m_vtype, n_vtype);
  sciprint("DEBUG: nrows = %d\n", nrows);
  sciprint("DEBUG: ncols = %d\n", ncols);

  sciprint("c :");
  for(i=0;i<ncols; i++) sciprint("%f ",*(c+i));
  sciprint("\n");
  sciprint("lhs :");
  for(i=0;i<nrows; i++) sciprint("%f ",*(lhs+i));
  sciprint("\n");
  sciprint("rhs :");
  for(i=0;i<nrows; i++) sciprint("%f ",*(rhs+i));
  sciprint("\n");
  sciprint("lb :");
  for(i=0;i<ncols; i++) sciprint("%f ",*(lower+i));
  sciprint("\n");
  sciprint("ub :");
  for(i=0;i<ncols; i++) sciprint("%f ",*(upper+i));
  sciprint("\n");
  sciprint("ctype = %s\n", ctype);
  sciprint("vtype = %s\n", vtype);
#endif

  //////////////////
  // The A matrix //
  //////////////////

  _SciErr = getVarAddressFromPosition(pvApiCtx, A_IN, &a_addr); SCICOINOR_ERROR;
  _SciErr = getVarType(pvApiCtx, a_addr, &type); SCICOINOR_ERROR;
  if(type!=sci_sparse)
    {
#ifdef DEBUG
      sciprint("DEBUG: A_IN is not sparse\n");
#endif
      
      _SciErr = getMatrixOfDouble(pvApiCtx, a_addr, &m_a, &n_a, &a); SCICOINOR_ERROR;
      A_matrix.setDimensions(nrows,ncols);
      
      if (a==NULL) 
	{
	  Scierror(999,"%s: invalid value of matrix a\n",fname);
	  
	  freeAllocatedSingleString(ctype);
	  freeAllocatedSingleString(vtype);
	  
	  return 0;
	}
      
      for(i=0; i<m_a; i++)
	{
	  for(j=0; j<n_a; j++)
	    {
	      if (*(a+i+j*m_a) != 0) A_matrix.modifyCoefficient(i,j,*(a+i+j*m_a));
#ifdef DEBUG
	      sciprint("%f ",*(a+i+j*m_a));
#endif
	    }
#ifdef DEBUG
	  sciprint("\n");
#endif
	}
    }
  else
    {
#ifdef DEBUG
      sciprint("DEBUG: A_IN is sparse\n");
#endif
      
      getAllocatedSparseMatrix(pvApiCtx, a_addr, &S_A.m, &S_A.n, &S_A.nel, &S_A.mnel, &S_A.icol, &S_A.R);
      A_matrix.setDimensions(nrows,ncols);
      
#ifdef DEBUG
      sciprint("A = [%d,%d]\n", m_a, n_a);
#endif
      
      nz = S_A.nel;
      
      count = 0;
      for(i=0;i<S_A.m;i++)
	{
	  if (S_A.mnel[i]!=0) 
	    {
#ifdef DEBUG
	      sciprint("mnel[%d] = %d - ",i, S_A.mnel[i]);
#endif
	      for(j=0;j<S_A.mnel[i];j++)
		{
		  count++;
		  A_matrix.modifyCoefficient(i,S_A.icol[count-1]-1,S_A.R[count-1]);
#ifdef DEBUG
		  sciprint("[%d] = %f ", S_A.icol[count-1]-1, S_A.R[count-1]);
#endif
		}
#ifdef DEBUG
	      sciprint("\n");
#endif
	    }
	}
      
      freeAllocatedSparseMatrix(S_A.mnel, S_A.icol, S_A.R);
    }
  
  /////////////////
  // Get options //
  /////////////////

#ifdef DEBUG
  sciprint("DEBUG: get options\n");
#endif

  // Default settings
  int * param_in_addr = NULL;
  int     solverchoice = 1, loglevel = 0, fact_freq = 200, perturb = 0;
  int     presolve = 0, red_grad = 1, maximumbarrieriterations = 200;
  int     tmp_int, tmp_res;
  double  tmp_double;
  char *  tmp_char;

  initPList(pvApiCtx, PARAM_IN, &param_in_addr);
  if (!checkPList(pvApiCtx, param_in_addr))
    {
      Scierror(999, "%s: argument n° %d is not a plist\n", fname, PARAM_IN);

      return 0;
    }

  // solver option
  getIntInPList(pvApiCtx, param_in_addr, "solver", &tmp_int, &tmp_res, 1, Log, CHECK_NONE);
  if (tmp_res!=-1) solverchoice = tmp_int;

  // Load the matrix in the solver
  switch(solverchoice)
    {
    case 6:
      modelInterior = new ClpInterior;
      modelBase = (ClpModel *)modelInterior;
      break;
    default:
      modelSimplex = new ClpSimplex;
      modelBase = (ClpModel *)modelSimplex;
      break;
    }

  // maxnumiterations option
  getIntInPList(pvApiCtx, param_in_addr, "maxnumiterations", &tmp_int, &tmp_res, 1000, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setMaximumIterations(tmp_int);
      
  // maxnumseconds option
  getDoubleInPList(pvApiCtx, param_in_addr, "maxnumseconds", &tmp_double, &tmp_res, 3600, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setMaximumSeconds(tmp_double);
      
  // primaltolerance option
  getDoubleInPList(pvApiCtx, param_in_addr, "primaltolerance", &tmp_double, &tmp_res, 1e-7, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setPrimalTolerance(tmp_double);

  // dualtolerance option
  getDoubleInPList(pvApiCtx, param_in_addr, "dualtolerance", &tmp_double, &tmp_res, 1e-7, Log, CHECK_NONE);
  if (tmp_res!=-1)   modelBase->setDualTolerance(tmp_double);				

  // verbose option
  getIntInPList(pvApiCtx, param_in_addr, "verbose", &tmp_int, &tmp_res, 0, Log, CHECK_NONE);
  if (tmp_res!=-1) 
    {
      ///////////////////////////////
      // Enable printing in Scilab //
      // and set parameters of clp //
      ///////////////////////////////
	  
      loglevel = tmp_int;

      printer = new DerivedHandler(); // assumed open	
      printer->setLogLevel(loglevel);
    }

  // optim_dir option
  getIntInPList(pvApiCtx, param_in_addr, "optim_dir", &tmp_int, &tmp_res, 1, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setOptimizationDirection(tmp_int);

  // writemps option
  getStringInPList(pvApiCtx, param_in_addr, "writemps", &tmp_char, &tmp_res, "test.mps", Log, CHECK_NONE);
  if (tmp_res!=-1) 
    {
      writemps_filename = tmp_char;
      writemps = 1;
#ifdef DEBUG
      sciprint("DEBUG: writemps_filename = %s\n", writemps_filename);
#endif
    }

  // perturb option
  getIntInPList(pvApiCtx, param_in_addr, "perturb", &tmp_int, &tmp_res, 0, Log, CHECK_NONE);
  if (tmp_res!=-1) perturb = tmp_int;

  // scaling option
  // Sets or unsets scaling:
  // - 0 -off
  // - 1 equilibrium (default)
  // - 2 geometric
  // - 3 auto
  // - 4 auto-but-as-initialSolve-in-bab. 
  getIntInPList(pvApiCtx, param_in_addr, "scaling", &tmp_int, &tmp_res, 1, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->scaling(tmp_int);

  // factorization frequency option
  getIntInPList(pvApiCtx, param_in_addr, "fact_freq", &tmp_int, &tmp_res, 200, Log, CHECK_NONE);
  if (tmp_res!=-1) fact_freq = tmp_int;

  // presolve option
  getIntInPList(pvApiCtx, param_in_addr, "presolve", &tmp_int, &tmp_res, 0, Log, CHECK_NONE);
  if (tmp_res!=-1) presolve = tmp_int;

  // reduced gradient phase option
  getIntInPList(pvApiCtx, param_in_addr, "red_grad", &tmp_int, &tmp_res, 1, Log, CHECK_NONE);
  if (tmp_res!=-1) red_grad = tmp_int;

  // maxnumiterationshotstart
  getIntInPList(pvApiCtx, param_in_addr, "maxnumiterationshotstart", &tmp_int, &tmp_res, 1000, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setIntParam(ClpMaxNumIterationHotStart, tmp_int);

  // dualobjectivelimit
  getDoubleInPList(pvApiCtx, param_in_addr, "dualobjectivelimit", &tmp_double, &tmp_res, 1e-7, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setDblParam(ClpDualObjectiveLimit, tmp_double);

  // primalobjectivelimit
  getDoubleInPList(pvApiCtx, param_in_addr, "primalobjectivelimit", &tmp_double, &tmp_res, 1e-7, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setDblParam(ClpPrimalObjectiveLimit, tmp_double);

  // obj offset
  getDoubleInPList(pvApiCtx, param_in_addr, "objoffset", &tmp_double, &tmp_res, 0.0, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setDblParam(ClpObjOffset, tmp_double);

  // presolvetolerance
  getDoubleInPList(pvApiCtx, param_in_addr, "presolvetolerance", &tmp_double, &tmp_res, 1e-7, Log, CHECK_NONE);
  if (tmp_res!=-1) modelBase->setDblParam(ClpPresolveTolerance, tmp_double);
      
  // maximumBarrierIterations
  getIntInPList(pvApiCtx, param_in_addr, "maxnumbarrieriterations", &tmp_int, &tmp_res, 200, Log, CHECK_NONE);
  if (tmp_res!=-1) maximumbarrieriterations = tmp_int;

  /////////////////////////////////////
  // Set the bounds on the variables //
  /////////////////////////////////////

  modelBase->loadProblem(A_matrix,lhs,rhs,c,lower,upper);

  for(i=0;i<ncols; i++)
    {
      modelBase->setColUpper(i, *(upper+i));
      modelBase->setColLower(i, *(lower+i));
      modelBase->setObjectiveCoefficient(i,*(c+i));
      if ((*(vtype+i)=='I')||(*(vtype+i)=='i'))
	{
	  modelBase->setInteger(i);
	}
      else
	{
	  modelBase->setContinuous(i);
	}
    }
  
  /////////////////////////////////////////
  // Set the boundary of the constraints //
  /////////////////////////////////////////

  // 'L' - smaller than - <=
  // 'E' - equality     - =
  // 'G' - greater than - >=
  // 'R' - Range        - <= + >=
  // 'N' - Free         - no constraints

#ifdef DEBUG
  sciprint("DEBUG: dealing with btype\n");
#endif
  for(i=0;i<nrows; i++)
    {
      switch(*(ctype+i))
	{
	case 'l':
	case 'L':
	  modelBase->setRowUpper(i, *(rhs+i));
	  modelBase->setRowLower(i, -COIN_DBL_MAX);
	  break;
	case 'e':
	case 'E':
	  modelBase->setRowUpper(i, *(rhs+i));
	  modelBase->setRowLower(i, *(rhs+i));
	  break;
	case 'n':
	case 'N':
	  modelBase->setRowUpper(i,  COIN_DBL_MAX);
	  modelBase->setRowLower(i, -COIN_DBL_MAX);
	  break;
	case 'r':
	case 'R':
	  modelBase->setRowUpper(i, *(rhs+i));
	  modelBase->setRowLower(i, *(lhs+i));
	  break;
	case 'g':
	case 'G':
	default:
	  modelBase->setRowUpper(i, COIN_DBL_MAX);
	  modelBase->setRowLower(i, *(lhs+i));
	  break;
	}
#ifdef DEBUG
      sciprint("row lower[%d] = %f row upper[%d] = %f\n", i, modelBase->getRowLower()[i], i, modelBase->getRowUpper()[i]);
#endif
    }
  
  ///////////////////////////////////
  // Affect names to rows and cols //
  ///////////////////////////////////

  modelBase->setIntParam(ClpNameDiscipline,0);

  ////////////////////////
  // Any quadratic part //
  ////////////////////////
  
#ifdef DEBUG
  sciprint("DEBUG: dealing with Q\n");
#endif
  _SciErr = getVarAddressFromPosition(pvApiCtx, Q_IN, &q_addr); SCICOINOR_ERROR;
  _SciErr = getVarType(pvApiCtx, q_addr, &type); SCICOINOR_ERROR;

  if(type!=sci_sparse)
    {
      _SciErr = getMatrixOfDouble(pvApiCtx, q_addr, &m_q, &n_q, &q); SCICOINOR_ERROR;
      
      if (n_q * m_q !=0)
	{
#ifdef DEBUG
	  sciprint("DEBUG: Q_IN is not sparse\n");
	  sciprint("DEBUG: Q size: n = %d m= %d\n", n_q, m_q);
#endif
	  
	  Q_matrix.setDimensions(nrows,ncols);
	  
	  nz = n_q * m_q;
	  
	  if (q==NULL) 
	    {
	      Scierror(999,"%s: invalid value of matrix q\n",fname);
	  
	      freeAllocatedSingleString(ctype);
	      freeAllocatedSingleString(vtype);

	      if (writemps_filename) FREE(writemps_filename);

	      return 0;
	    }
	  
	  for(i=0; i<m_q; i++)
	    {
	      for(j=0; j<n_q; j++)
		{
		  if (*(q+i+j*m_q)!=0) Q_matrix.modifyCoefficient(i,j,*(q+i+j*m_q));
		}
	    }
	  modelBase->loadQuadraticObjective(Q_matrix);
	}
    }
  else
    {
      getAllocatedSparseMatrix(pvApiCtx, q_addr, &S_Q.m, &S_Q.n, &S_Q.nel, &S_Q.mnel, &S_Q.icol, &S_Q.R);
      
      if (S_Q.n * S_Q.m!=0)
	{
#ifdef DEBUG
	  sciprint("DEBUG: Q_IN is sparse\n");
	  sciprint("DEBUG: Q size: n = %d m= %d\n", S_Q.n, S_Q.m);
#endif
	  Q_matrix.setDimensions(nrows,ncols);
	  
	  nz = S_Q.nel;
	  
	  count = 0;
	  for(i=0;i<S_Q.m;i++)
	    {
	      if (S_Q.mnel[i]!=0) 
		{
		  for(j=0;j<S_Q.mnel[i];j++)
		    {
		      count++;
		      Q_matrix.modifyCoefficient(i,S_Q.icol[count-1]-1,S_Q.R[count-1]);
		    }
		}
	    }
	  modelBase->loadQuadraticObjective(Q_matrix);
	}

      freeAllocatedSparseMatrix(S_Q.mnel, S_Q.icol, S_Q.R);
    }
 
  // Solver specific part
  switch(solverchoice)
    {
    case 6:
      modelInterior->setMaximumBarrierIterations(maximumbarrieriterations);
      break;
    default:
      modelSimplex->setFactorizationFrequency(fact_freq);
      modelSimplex->setPerturbation(perturb);
      break;
    }

  ///////////////////////////
  // Pre / Post resolution //
  ///////////////////////////

#ifdef HANDLE_CTRLC
  ///////////////////////////////////////////////////////////
  // Pass in the event handler, to handle ctrl+c in scilab //
  ///////////////////////////////////////////////////////////

  if (modelSimplex) 
    {
      modelSimplex->passInEventHandler(&SciClpEventHandler);
      modelSimplex->passInMessageHandler(printer);
    }
#endif

#ifdef DEBUG
  sciprint("DEBUG: presolve\n");
#endif
  // If the solver is not ClpInterior we can set the presolve option
  if (presolve && solverchoice!=6) 
    {
      TRYCATCH(modelSimplex->initialSolve(modelSolve));
      switch(presolve)
	{
	case 2:
	  TRYCATCH(modelSimplex->initialDualSolve());
	  break;
	case 3:
	  TRYCATCH(modelSimplex->initialPrimalSolve());
	  break;
	case 4:
	  TRYCATCH(modelSimplex->initialBarrierSolve());
	  break;
	case 5:
	  TRYCATCH(modelSimplex->initialBarrierNoCrossSolve());
	  break;
	default:
	  TRYCATCH(modelSimplex->initialSolve());
	  break;
	}
    }

  ////////////////////////////////////////////
  // If needed, write the problem in a file //
  ////////////////////////////////////////////

#ifdef DEBUG
  sciprint("DEBUG: dealing with writemps\n");
#endif
  if (writemps)
    {
      modelBase->writeMps(writemps_filename);
      if (loglevel) sciprint("sciclp: writing %s mps file\n",writemps_filename);
    }

  ////////////////
  // Resolution //
  ////////////////

#ifdef DEBUG
  sciprint("DEBUG: resolution\n");
  sciprint("model number columns = %d\n", modelBase->numberColumns());
  sciprint("model number rows    = %d\n", modelBase->numberRows());
#endif

  if ((solverchoice>=1)&&(solverchoice<=5))
    {
      TRYCATCH(modelSimplex->initialSolve())
    }

#ifdef HANDLE_CTRLC
  ///////////////////////////////////////////////////////////
  // Pass in the event handler, to handle ctrl+c in scilab //
  ///////////////////////////////////////////////////////////

  if (modelSimplex)  
    {
      modelSimplex->passInEventHandler(&SciClpEventHandler);
      modelSimplex->passInMessageHandler(printer);
    }
  if (modelInterior) 
    {
      modelInterior->passInEventHandler(&SciClpEventHandler);
      modelInterior->passInMessageHandler(printer);
    }
#endif

  switch (solverchoice)
    {
    case 2:
      TRYCATCH(status = modelSimplex->dual());
      break;
    case 3:
      TRYCATCH(status = modelSimplex->barrier(false));
      break;
    case 4:
      TRYCATCH(status = modelSimplex->barrier(true));
      break;
    case 5:
      TRYCATCH(status = modelSimplex->reducedGradient(red_grad));
      break;
    case 6:
      cholesky = new ClpCholeskyBase();
      cholesky->setKKT(true);
      modelInterior->setCholesky(cholesky);
      TRYCATCH(status = modelInterior->primalDual());
      break;
    case 7:
      TRYCATCH(status = modelInterior->pdco());
      break;
    default:
      TRYCATCH(status = modelSimplex->primal());
      break;
    }

#ifdef DEBUG
  if (status && loglevel) sciprint("Optimization failed\n");
#endif

  int clp_status = 0;

  clp_status  = (int)(pow(2.0,0.0)*modelBase->isAbandoned());
  clp_status += (int)(pow(2.0,1.0)*modelBase->isProvenOptimal());
  clp_status += (int)(pow(2.0,2.0)*modelBase->isProvenPrimalInfeasible());
  clp_status += (int)(pow(2.0,3.0)*modelBase->isProvenDualInfeasible());
  clp_status += (int)(pow(2.0,4.0)*modelBase->isPrimalObjectiveLimitReached());
  clp_status += (int)(pow(2.0,5.0)*modelBase->isDualObjectiveLimitReached());  
  clp_status += (int)(pow(2.0,6.0)*modelBase->isIterationLimitReached());      

  //////////////////////////////
  // Allocate for return data //
  //////////////////////////////

#ifdef DEBUG
  sciprint("DEBUG: allocating data\n");
#endif

  int m_xmin   = ncols, n_xmin   = 1;
  int m_lambda   = 1, n_lambda   = nrows;
  int * extra_addr = NULL;

  char * ListLabels [] = {"lambda","secondary_status","clp_status"};

  _SciErr = createMatrixOfDouble(pvApiCtx, XMIN_OUT, m_xmin, n_xmin, (double *)modelBase->primalColumnSolution()); SCICOINOR_ERROR;
  createScalarDouble(pvApiCtx, FMIN_OUT, modelBase->getObjValue());
  createScalarDouble(pvApiCtx, STATUS_OUT, (double)modelBase->status());

  _SciErr = createPList(pvApiCtx, EXTRA_OUT, &extra_addr, (char **)ListLabels, 3); SCICOINOR_ERROR;

  _SciErr = createColVectorOfDoubleInPList(pvApiCtx, EXTRA_OUT, extra_addr, "lambda", m_lambda*n_lambda, (double *)modelBase->dualRowSolution()); SCICOINOR_ERROR;
  _SciErr = createIntInPList(pvApiCtx, EXTRA_OUT, extra_addr, "secondary_status", modelBase->secondaryStatus()); SCICOINOR_ERROR;
  _SciErr = createIntInPList(pvApiCtx, EXTRA_OUT, extra_addr, "clp_status",       clp_status); SCICOINOR_ERROR;

#ifdef DEBUG
  sciprint("DEBUG: getting solution\n");
#endif

  //
  // status of problem:
  //  -1 - unknown e.g. before solve or if postSolve says not optimal
  //   0 - optimal
  //   1 - primal infeasible
  //   2 - dual infeasible
  //   3 - stopped on iterations or time
  //   4 - stopped due to errors
  //   5 - stopped by event handler (virtual int ClpEventHandler::event())
  //

  // Secondary status of problem - may get extended 
  // - 0 - none 
  // - 1 - primal infeasible because dual limit reached OR probably primal infeasible but can't prove it (main status 4)
  // - 2 - scaled problem optimal - unscaled problem has primal infeasibilities
  // - 3 - scaled problem optimal - unscaled problem has dual infeasibilities
  // - 4 - scaled problem optimal - unscaled problem has primal and dual infeasibilities
  // - 5 - giving up in primal with flagged variables
  // - 6 - failed due to empty problem check
  // - 7 - postSolve says not optimal
  // - 8 - failed due to bad element check
  // - 9 - status was 3 and stopped on time 
  // - 100 up - translation of enum from ClpEventHandler.

  /////////////////////////////////
  // Copy solutions if available //
  /////////////////////////////////

#ifdef DEBUG
  sciprint("DEBUG: returning data\n");
#endif

  LhsVar(1) = XMIN_OUT;
  LhsVar(2) = FMIN_OUT;
  LhsVar(3) = STATUS_OUT;
  LhsVar(4) = EXTRA_OUT;

  //////////////////////////////
  // Delete allocated objects //
  //////////////////////////////

  if (modelSimplex)  delete modelSimplex;
  if (modelInterior) delete modelInterior;
  if (printer)       delete printer;

  freeAllocatedSingleString(ctype);
  freeAllocatedSingleString(vtype);

  if (writemps_filename) FREE(writemps_filename);

  return 0;
}
Пример #4
0
int main(int argc, const char *argv[])
{
     int numberColumns;
     int numberRows;

     FILE * fp;
     if (argc > 1) {
          fp = fopen(argv[1], "r");
          if (!fp) {
               fprintf(stderr, "Unable to open file %s\n", argv[1]);
               exit(1);
          }
     } else {
          fp = fopen("input.130", "r");
          if (!fp) {
               fprintf(stderr, "Unable to open file input.l30 in Samples directory\n");
               exit(1);
          }
     }
     int problem;
     char temp[100];
     // read and skip
     fscanf(fp, "%s", temp);
     assert(!strcmp(temp, "BEGIN"));
     fscanf(fp, "%*s %*s %d %d %*s %*s %d %*s", &problem, &numberRows,
            &numberColumns);
     // scan down to SUPPLY
     while (fgets(temp, 100, fp)) {
          if (!strncmp(temp, "SUPPLY", 6))
               break;
     }
     if (strncmp(temp, "SUPPLY", 6)) {
          fprintf(stderr, "Unable to find SUPPLY\n");
          exit(2);
     }
     // get space for rhs
     double * lower = new double[numberRows];
     double * upper = new double[numberRows];
     int i;
     for (i = 0; i < numberRows; i++) {
          lower[i] = 0.0;
          upper[i] = 0.0;
     }
     // ***** Remember to convert to C notation
     while (fgets(temp, 100, fp)) {
          int row;
          int value;
          if (!strncmp(temp, "ARCS", 4))
               break;
          sscanf(temp, "%d %d", &row, &value);
          upper[row-1] = -value;
          lower[row-1] = -value;
     }
     if (strncmp(temp, "ARCS", 4)) {
          fprintf(stderr, "Unable to find ARCS\n");
          exit(2);
     }
     // number of columns may be underestimate
     int * head = new int[2*numberColumns];
     int * tail = new int[2*numberColumns];
     int * ub = new int[2*numberColumns];
     int * cost = new int[2*numberColumns];
     // ***** Remember to convert to C notation
     numberColumns = 0;
     while (fgets(temp, 100, fp)) {
          int iHead;
          int iTail;
          int iUb;
          int iCost;
          if (!strncmp(temp, "DEMAND", 6))
               break;
          sscanf(temp, "%d %d %d %d", &iHead, &iTail, &iCost, &iUb);
          iHead--;
          iTail--;
          head[numberColumns] = iHead;
          tail[numberColumns] = iTail;
          ub[numberColumns] = iUb;
          cost[numberColumns] = iCost;
          numberColumns++;
     }
     if (strncmp(temp, "DEMAND", 6)) {
          fprintf(stderr, "Unable to find DEMAND\n");
          exit(2);
     }
     // ***** Remember to convert to C notation
     while (fgets(temp, 100, fp)) {
          int row;
          int value;
          if (!strncmp(temp, "END", 3))
               break;
          sscanf(temp, "%d %d", &row, &value);
          upper[row-1] = value;
          lower[row-1] = value;
     }
     if (strncmp(temp, "END", 3)) {
          fprintf(stderr, "Unable to find END\n");
          exit(2);
     }
     printf("Problem %d has %d rows and %d columns\n", problem,
            numberRows, numberColumns);
     fclose(fp);
     ClpSimplex  model;
     // now build model - we have rhs so build columns - two elements
     // per column

     double * objective = new double[numberColumns];
     double * lowerColumn = new double[numberColumns];
     double * upperColumn = new double[numberColumns];

     double * element = new double [2*numberColumns];
     int * start = new int[numberColumns+1];
     int * row = new int[2*numberColumns];
     start[numberColumns] = 2 * numberColumns;
     for (i = 0; i < numberColumns; i++) {
          start[i] = 2 * i;
          element[2*i] = -1.0;
          element[2*i+1] = 1.0;
          row[2*i] = head[i];
          row[2*i+1] = tail[i];
          lowerColumn[i] = 0.0;
          upperColumn[i] = ub[i];
          objective[i] = cost[i];
     }
     // Create Packed Matrix
     CoinPackedMatrix matrix;
     int * lengths = NULL;
     matrix.assignMatrix(true, numberRows, numberColumns,
                         2 * numberColumns, element, row, start, lengths);
     ClpNetworkMatrix network(matrix);
     // load model

     model.loadProblem(network,
                       lowerColumn, upperColumn, objective,
                       lower, upper);

     delete [] lower;
     delete [] upper;
     delete [] head;
     delete [] tail;
     delete [] ub;
     delete [] cost;
     delete [] objective;
     delete [] lowerColumn;
     delete [] upperColumn;
     delete [] element;
     delete [] start;
     delete [] row;

     /* The confusing flow below is in to exercise both dual and primal
        when ClpNetworkMatrix storage used.

        For practical use just one call e.g. model.dual(); would be used.

        If network then factorization scheme is changed
        to be much faster.

        Still not as fast as a real network code, but more flexible
     */
     model.factorization()->maximumPivots(200 + model.numberRows() / 100);
     model.factorization()->maximumPivots(1000);
     //model.factorization()->maximumPivots(1);
     if (model.numberRows() < 50)
          model.messageHandler()->setLogLevel(63);
     model.dual();
     model.setOptimizationDirection(-1);
     //model.messageHandler()->setLogLevel(63);
     model.primal();
     model.setOptimizationDirection(1);
     model.primal();
     return 0;
}
Пример #5
0
int main(int argc, const char *argv[])
{
     {
          // Empty model
          ClpSimplex  model;

          // Bounds on rows - as dense vector
          double lower[] = {2.0, 1.0};
          double upper[] = {COIN_DBL_MAX, 1.0};

          // Create space for 2 rows
          model.resize(2, 0);
          // Fill in
          int i;
          // Now row bounds
          for (i = 0; i < 2; i++) {
               model.setRowLower(i, lower[i]);
               model.setRowUpper(i, upper[i]);
          }
          // Now add column 1
          int column1Index[] = {0, 1};
          double column1Value[] = {1.0, 1.0};
          model.addColumn(2, column1Index, column1Value,
                          0.0, 2, 1.0);
          // Now add column 2
          int column2Index[] = {1};
          double column2Value[] = { -5.0};
          model.addColumn(1, column2Index, column2Value,
                          0.0, COIN_DBL_MAX, 0.0);
          // Now add column 3
          int column3Index[] = {0, 1};
          double column3Value[] = {1.0, 1.0};
          model.addColumn(2, column3Index, column3Value,
                          0.0, 4.0, 4.0);
          // solve
          model.dual();

          /*
            Adding one column at a time has a significant overhead so let's
            try a more complicated but faster way

            First time adding in 10000 columns one by one

          */
          model.allSlackBasis();
          ClpSimplex modelSave = model;
          double time1 = CoinCpuTime();
          int k;
          for (k = 0; k < 10000; k++) {
               int column2Index[] = {0, 1};
               double column2Value[] = {1.0, -5.0};
               model.addColumn(2, column2Index, column2Value,
                               0.0, 1.0, 10000.0);
          }
          printf("Time for 10000 addColumn is %g\n", CoinCpuTime() - time1);
          model.dual();
          model = modelSave;
          // Now use build
          CoinBuild buildObject;
          time1 = CoinCpuTime();
          for (k = 0; k < 100000; k++) {
               int column2Index[] = {0, 1};
               double column2Value[] = {1.0, -5.0};
               buildObject.addColumn(2, column2Index, column2Value,
                                     0.0, 1.0, 10000.0);
          }
          model.addColumns(buildObject);
          printf("Time for 100000 addColumn using CoinBuild is %g\n", CoinCpuTime() - time1);
          model.dual();
          model = modelSave;
          // Now use build +-1
          int del[] = {0, 1, 2};
          model.deleteColumns(3, del);
          CoinBuild buildObject2;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int column2Index[] = {0, 1};
               double column2Value[] = {1.0, 1.0, -1.0};
               int bias = k & 1;
               buildObject2.addColumn(2, column2Index, column2Value + bias,
                                      0.0, 1.0, 10000.0);
          }
          model.addColumns(buildObject2, true);
          printf("Time for 10000 addColumn using CoinBuild+-1 is %g\n", CoinCpuTime() - time1);
          model.dual();
          model = modelSave;
          // Now use build +-1
          model.deleteColumns(3, del);
          CoinModel modelObject2;
          time1 = CoinCpuTime();
          for (k = 0; k < 10000; k++) {
               int column2Index[] = {0, 1};
               double column2Value[] = {1.0, 1.0, -1.0};
               int bias = k & 1;
               modelObject2.addColumn(2, column2Index, column2Value + bias,
                                      0.0, 1.0, 10000.0);
          }
          model.addColumns(modelObject2, true);
          printf("Time for 10000 addColumn using CoinModel+-1 is %g\n", CoinCpuTime() - time1);
          //model.writeMps("xx.mps");
          model.dual();
          model = modelSave;
          // Now use model
          CoinModel modelObject;
          time1 = CoinCpuTime();
          for (k = 0; k < 100000; k++) {
               int column2Index[] = {0, 1};
               double column2Value[] = {1.0, -5.0};
               modelObject.addColumn(2, column2Index, column2Value,
                                     0.0, 1.0, 10000.0);
          }
          model.addColumns(modelObject);
          printf("Time for 100000 addColumn using CoinModel is %g\n", CoinCpuTime() - time1);
          model.dual();
          // Print column solution Just first 3 columns
          int numberColumns = model.numberColumns();
          numberColumns = CoinMin(3, numberColumns);

          // Alternatively getColSolution()
          double * columnPrimal = model.primalColumnSolution();
          // Alternatively getReducedCost()
          double * columnDual = model.dualColumnSolution();
          // Alternatively getColLower()
          double * columnLower = model.columnLower();  // Alternatively getColUpper()
          double * columnUpper = model.columnUpper();
          // Alternatively getObjCoefficients()
          double * columnObjective = model.objective();

          int iColumn;

          std::cout << "               Primal          Dual         Lower         Upper          Cost"
                    << std::endl;

          for (iColumn = 0; iColumn < numberColumns; iColumn++) {
               double value;
               std::cout << std::setw(6) << iColumn << " ";
               value = columnPrimal[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnDual[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnLower[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnUpper[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
               value = columnObjective[iColumn];
               if (fabs(value) < 1.0e5)
                    std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;

               std::cout << std::endl;
          }
          std::cout << "--------------------------------------" << std::endl;
     }
     {
          // Now copy a model
          ClpSimplex  model;
          int status;
          if (argc < 2) {
#if defined(SAMPLEDIR)
               status = model.readMps(SAMPLEDIR "/p0033.mps", true);
#else
               fprintf(stderr, "Do not know where to find sample MPS files.\n");
               exit(1);
#endif
          } else
               status = model.readMps(argv[1]);
          if (status) {
               printf("errors on input\n");
               exit(77);
          }
          model.initialSolve();
          int numberRows = model.numberRows();
          int numberColumns = model.numberColumns();
          const double * rowLower = model.rowLower();
          const double * rowUpper = model.rowUpper();

          // Start off model2
          ClpSimplex model2;
          model2.addRows(numberRows, rowLower, rowUpper, NULL);

          // Build object
          CoinBuild buildObject;
          // Add columns
          const double * columnLower = model.columnLower();
          const double * columnUpper = model.columnUpper();
          const double * objective = model.objective();
          CoinPackedMatrix * matrix = model.matrix();
          const int * row = matrix->getIndices();
          const int * columnLength = matrix->getVectorLengths();
          const CoinBigIndex * columnStart = matrix->getVectorStarts();
          const double * elementByColumn = matrix->getElements();
          for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
               CoinBigIndex start = columnStart[iColumn];
               buildObject.addColumn(columnLength[iColumn], row + start, elementByColumn + start,
                                     columnLower[iColumn], columnUpper[iColumn],
                                     objective[iColumn]);
          }

          // add in
          model2.addColumns(buildObject);
          model2.initialSolve();
     }
     {
          // and again
          ClpSimplex  model;
          int status;
          if (argc < 2) {
#if defined(SAMPLEDIR)
               status = model.readMps(SAMPLEDIR "/p0033.mps", true);
#else
               fprintf(stderr, "Do not know where to find sample MPS files.\n");
               exit(1);
#endif
          } else
               status = model.readMps(argv[1]);
          if (status) {
               printf("errors on input\n");
               exit(77);
          }
          model.initialSolve();
          int numberRows = model.numberRows();
          int numberColumns = model.numberColumns();
          const double * rowLower = model.rowLower();
          const double * rowUpper = model.rowUpper();

          // Build object
          CoinModel buildObject;
          for (int iRow = 0; iRow < numberRows; iRow++)
               buildObject.setRowBounds(iRow, rowLower[iRow], rowUpper[iRow]);

          // Add columns
          const double * columnLower = model.columnLower();
          const double * columnUpper = model.columnUpper();
          const double * objective = model.objective();
          CoinPackedMatrix * matrix = model.matrix();
          const int * row = matrix->getIndices();
          const int * columnLength = matrix->getVectorLengths();
          const CoinBigIndex * columnStart = matrix->getVectorStarts();
          const double * elementByColumn = matrix->getElements();
          for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
               CoinBigIndex start = columnStart[iColumn];
               buildObject.addColumn(columnLength[iColumn], row + start, elementByColumn + start,
                                     columnLower[iColumn], columnUpper[iColumn],
                                     objective[iColumn]);
          }

          // add in
          ClpSimplex model2;
          model2.loadProblem(buildObject);
          model2.initialSolve();
     }
     return 0;
}
Пример #6
0
int main(int argc, const char *argv[])
{
     // Empty model
     ClpSimplex  model;
     std::string mpsFileName;
     if (argc >= 2) mpsFileName = argv[1];
     else {
#if defined(NETLIBDIR)
          mpsFileName = NETLIBDIR "/25fv47.mps";
#else
          fprintf(stderr, "Do not know where to find netlib MPS files.\n");
          exit(1);
#endif
     }
     int status = model.readMps(mpsFileName.c_str(), true);

     if (status) {
          fprintf(stderr, "Bad readMps %s\n", mpsFileName.c_str());
          fprintf(stdout, "Bad readMps %s\n", mpsFileName.c_str());
          exit(1);
     }
     // Point to data
     int numberRows = model.numberRows();
     const double * rowLower = model.rowLower();
     const double * rowUpper = model.rowUpper();
     int numberColumns = model.numberColumns();
     const double * columnLower = model.columnLower();
     const double * columnUpper = model.columnUpper();
     const double * columnObjective = model.objective();
     CoinPackedMatrix * matrix = model.matrix();
     // get row copy
     CoinPackedMatrix rowCopy = *matrix;
     rowCopy.reverseOrdering();
     const int * column = rowCopy.getIndices();
     const int * rowLength = rowCopy.getVectorLengths();
     const CoinBigIndex * rowStart = rowCopy.getVectorStarts();
     const double * element = rowCopy.getElements();
     //const int * row = matrix->getIndices();
     //const int * columnLength = matrix->getVectorLengths();
     //const CoinBigIndex * columnStart = matrix->getVectorStarts();
     //const double * elementByColumn = matrix->getElements();

     // solve
     model.dual();
     // Now build new model
     CoinModel build;
     double time1 = CoinCpuTime();
     // Row bounds
     int iRow;
     for (iRow = 0; iRow < numberRows; iRow++) {
          build.setRowBounds(iRow, rowLower[iRow], rowUpper[iRow]);
          // optional name
          build.setRowName(iRow, model.rowName(iRow).c_str());
     }
     // Column bounds and objective
     int iColumn;
     for (iColumn = 0; iColumn < numberColumns; iColumn++) {
          build.setColumnLower(iColumn, columnLower[iColumn]);
          build.setColumnUpper(iColumn, columnUpper[iColumn]);
          build.setObjective(iColumn, columnObjective[iColumn]);
          // optional name
          build.setColumnName(iColumn, model.columnName(iColumn).c_str());
     }
     // Adds elements one by one by row (backwards by row)
     for (iRow = numberRows - 1; iRow >= 0; iRow--) {
          int start = rowStart[iRow];
          for (int j = start; j < start + rowLength[iRow]; j++)
               build(iRow, column[j], element[j]);
     }
     double time2 = CoinCpuTime();
     // Now create clpsimplex
     ClpSimplex model2;
     model2.loadProblem(build);
     double time3 = CoinCpuTime();
     printf("Time for build using CoinModel is %g (%g for loadproblem)\n", time3 - time1,
            time3 - time2);
     model2.dual();
     // Now do with strings attached
     // Save build to show how to go over rows
     CoinModel saveBuild = build;
     build = CoinModel();
     time1 = CoinCpuTime();
     // Column bounds
     for (iColumn = 0; iColumn < numberColumns; iColumn++) {
          build.setColumnLower(iColumn, columnLower[iColumn]);
          build.setColumnUpper(iColumn, columnUpper[iColumn]);
     }
     // Objective - half the columns as is and half with multiplier of "1.0+multiplier"
     // Pick up from saveBuild (for no reason at all)
     for (iColumn = 0; iColumn < numberColumns; iColumn++) {
          double value = saveBuild.objective(iColumn);
          if (iColumn * 2 < numberColumns) {
               build.setObjective(iColumn, columnObjective[iColumn]);
          } else {
               // create as string
               char temp[100];
               sprintf(temp, "%g + abs(%g*multiplier)", value, value);
               build.setObjective(iColumn, temp);
          }
     }
     // It then adds rows one by one but for half the rows sets their values
     //      with multiplier of "1.0+1.5*multiplier"
     for (iRow = 0; iRow < numberRows; iRow++) {
          if (iRow * 2 < numberRows) {
               // add row in simple way
               int start = rowStart[iRow];
               build.addRow(rowLength[iRow], column + start, element + start,
                            rowLower[iRow], rowUpper[iRow]);
          } else {
               // As we have to add one by one let's get from saveBuild
               CoinModelLink triple = saveBuild.firstInRow(iRow);
               while (triple.column() >= 0) {
                    int iColumn = triple.column();
                    if (iColumn * 2 < numberColumns) {
                         // just value as normal
                         build(iRow, triple.column(), triple.value());
                    } else {
                         // create as string
                         char temp[100];
                         sprintf(temp, "%g + (1.5*%g*multiplier)", triple.value(), triple.value());
                         build(iRow, iColumn, temp);
                    }
                    triple = saveBuild.next(triple);
               }
               // but remember to do rhs
               build.setRowLower(iRow, rowLower[iRow]);
               build.setRowUpper(iRow, rowUpper[iRow]);
          }
     }
     time2 = CoinCpuTime();
     // Now create ClpSimplex
     // If small switch on error printing
     if (numberColumns < 50)
          build.setLogLevel(1);
     int numberErrors = model2.loadProblem(build);
     // should fail as we never set multiplier
     assert(numberErrors);
     time3 = CoinCpuTime() - time2;
     // subtract out unsuccessful times
     time1 += time3;
     time2 += time3;
     build.associateElement("multiplier", 0.0);
     numberErrors = model2.loadProblem(build);
     assert(!numberErrors);
     time3 = CoinCpuTime();
     printf("Time for build using CoinModel is %g (%g for successful loadproblem)\n", time3 - time1,
            time3 - time2);
     build.writeMps("zero.mps");
     // It then loops with multiplier going from 0.0 to 2.0 in increments of 0.1
     for (double multiplier = 0.0; multiplier < 2.0; multiplier += 0.1) {
          build.associateElement("multiplier", multiplier);
          numberErrors = model2.loadProblem(build, true);
          assert(!numberErrors);
          model2.dual();
     }

     return 0;
}
Пример #7
0
int main(int argc, const char *argv[])
{
     ClpSimplex  model;
     int status;
     // Keep names
     if (argc < 2) {
#if defined(SAMPLEDIR)
          status = model.readMps(SAMPLEDIR "/p0033.mps", true);
#else
          fprintf(stderr, "Do not know where to find sample MPS files.\n");
          exit(1);
#endif
     } else
          status = model.readMps(argv[1], true);
     /*
       This driver is similar to minimum.cpp, but it
       sets all parameter values to their defaults.  The purpose of this
       is to give a list of most of the methods that the end user will need.

       There are also some more methods as for OsiSolverInterface e.g.
       some loadProblem methods and deleteRows and deleteColumns.

       Often two methods do the same thing, one having a name I like
       while the other adheres to OsiSolverInterface standards
     */

     // Use exact devex ( a variant of steepest edge)
     ClpPrimalColumnSteepest primalSteepest;
     model.setPrimalColumnPivotAlgorithm(primalSteepest);


     int integerValue;
     double value;

     // Infeasibility cost
     value = model.infeasibilityCost();
     std::cout << "Default value of infeasibility cost is " << value << std::endl;
     model.setInfeasibilityCost(value);

     if (!status) {
          model.primal();
     }
     // Number of rows and columns - also getNumRows, getNumCols
     std::string modelName;
     model.getStrParam(ClpProbName, modelName);
     std::cout << "Model " << modelName << " has " << model.numberRows() << " rows and " <<
               model.numberColumns() << " columns" << std::endl;

     /* Some parameters as in OsiSolverParameters.  ObjectiveLimits
        are not active yet.  dualTolerance, setDualTolerance,
        primalTolerance and setPrimalTolerance may be used as well */

     model.getDblParam(ClpDualObjectiveLimit, value);
     std::cout << "Value of ClpDualObjectiveLimit is " << value << std::endl;
     model.getDblParam(ClpPrimalObjectiveLimit, value);
     std::cout << "Value of ClpPrimalObjectiveLimit is " << value << std::endl;
     model.getDblParam(ClpDualTolerance, value);
     std::cout << "Value of ClpDualTolerance is " << value << std::endl;
     model.getDblParam(ClpPrimalTolerance, value);
     std::cout << "Value of ClpPrimalTolerance is " << value << std::endl;
     model.getDblParam(ClpObjOffset, value);
     std::cout << "Value of ClpObjOffset is " << value << std::endl;

     // setDblParam(ClpPrimalTolerance) is same as this
     model.getDblParam(ClpPrimalTolerance, value);
     model.setPrimalTolerance(value);

     model.setDualTolerance(model.dualTolerance()) ;

     // Other Param stuff

     // Can also use maximumIterations
     model.getIntParam(ClpMaxNumIteration, integerValue);
     std::cout << "Value of ClpMaxNumIteration is " << integerValue << std::endl;
     model.setMaximumIterations(integerValue);

     // Not sure this works yet
     model.getIntParam(ClpMaxNumIterationHotStart, integerValue);
     std::cout << "Value of ClpMaxNumIterationHotStart is "
               << integerValue << std::endl;

     // Can also use getIterationCount and getObjValue
     /* Status of problem:
         0 - optimal
         1 - primal infeasible
         2 - dual infeasible
         3 - stopped on iterations etc
         4 - stopped due to errors
     */
     std::cout << "Model status is " << model.status() << " after "
               << model.numberIterations() << " iterations - objective is "
               << model.objectiveValue() << std::endl;

     assert(!model.isAbandoned());
     assert(model.isProvenOptimal());
     assert(!model.isProvenPrimalInfeasible());
     assert(!model.isProvenDualInfeasible());
     assert(!model.isPrimalObjectiveLimitReached());
     assert(!model.isDualObjectiveLimitReached());
     assert(!model.isIterationLimitReached());


     // Things to help you determine if optimal
     assert(model.primalFeasible());
     assert(!model.numberPrimalInfeasibilities());
     assert(model.sumPrimalInfeasibilities() < 1.0e-7);
     assert(model.dualFeasible());
     assert(!model.numberDualInfeasibilities());
     assert(model.sumDualInfeasibilities() < 1.0e-7);

     // Save warm start and set to all slack
     unsigned char * basis1 = model.statusCopy();
     model.createStatus();

     // Now create another model and do hot start
     ClpSimplex model2 = model;
     model2.copyinStatus(basis1);
     delete [] basis1;

     // Check model has not got basis (should iterate)
     model.dual();

     // Can use getObjSense
     model2.setOptimizationDirection(model.optimizationDirection());

     // Can use scalingFlag() to check if scaling on
     // But set up scaling
     model2.scaling();

     // Could play with sparse factorization on/off
     model2.setSparseFactorization(model.sparseFactorization());

     // Sets row pivot choice algorithm in dual
     ClpDualRowSteepest dualSteepest;
     model2.setDualRowPivotAlgorithm(dualSteepest);

     // Dual bound (i.e. dual infeasibility cost)
     value = model.dualBound();
     std::cout << "Default value of dual bound is " << value << std::endl;
     model.setDualBound(value);

     // Do some deafult message handling
     // To see real use - see OsiOslSolverInterfaceTest.cpp
     CoinMessageHandler handler;
     model2.passInMessageHandler(& handler);
     model2.newLanguage(CoinMessages::us_en);

     //Increase level of detail
     model2.setLogLevel(4);

     // solve
     model2.dual();
     // flip direction twice and solve
     model2.setOptimizationDirection(-1);
     model2.dual();
     model2.setOptimizationDirection(1);
     //Decrease level of detail
     model2.setLogLevel(1);
     model2.dual();

     /*
       Now for getting at information.  This will not deal with:

       ClpMatrixBase * rowCopy() and ClpMatrixbase * clpMatrix()

       nor with

       double * infeasibilityRay() and double * unboundedRay()
       (NULL returned if none/wrong)
       Up to user to use delete [] on these arrays.

      */


     /*
       Now to print out solution.  The methods used return modifiable
       arrays while the alternative names return const pointers -
       which is of course much more virtuous

      */

     int numberRows = model2.numberRows();

     // Alternatively getRowActivity()
     double * rowPrimal = model2.primalRowSolution();
     // Alternatively getRowPrice()
     double * rowDual = model2.dualRowSolution();
     // Alternatively getRowLower()
     double * rowLower = model2.rowLower();
     // Alternatively getRowUpper()
     double * rowUpper = model2.rowUpper();
     // Alternatively getRowObjCoefficients()
     double * rowObjective = model2.rowObjective();

     // If we have not kept names (parameter to readMps) this will be 0
     assert(model2.lengthNames());

     // Row names
     const std::vector<std::string> * rowNames = model2.rowNames();


     int iRow;

     std::cout << "                       Primal          Dual         Lower         Upper        (Cost)"
               << std::endl;

     for (iRow = 0; iRow < numberRows; iRow++) {
          double value;
          std::cout << std::setw(6) << iRow << " " << std::setw(8) << (*rowNames)[iRow];
          value = rowPrimal[iRow];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          value = rowDual[iRow];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          value = rowLower[iRow];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          value = rowUpper[iRow];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          if (rowObjective) {
               value = rowObjective[iRow];
               if (fabs(value) < 1.0e5)
                    std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
               else
                    std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          }
          std::cout << std::endl;
     }
     std::cout << "--------------------------------------" << std::endl;

     // Columns

     int numberColumns = model2.numberColumns();

     // Alternatively getColSolution()
     double * columnPrimal = model2.primalColumnSolution();
     // Alternatively getReducedCost()
     double * columnDual = model2.dualColumnSolution();
     // Alternatively getColLower()
     double * columnLower = model2.columnLower();
     // Alternatively getColUpper()
     double * columnUpper = model2.columnUpper();
     // Alternatively getObjCoefficients()
     double * columnObjective = model2.objective();

     // If we have not kept names (parameter to readMps) this will be 0
     assert(model2.lengthNames());

     // Column names
     const std::vector<std::string> * columnNames = model2.columnNames();


     int iColumn;

     std::cout << "                       Primal          Dual         Lower         Upper          Cost"
               << std::endl;

     for (iColumn = 0; iColumn < numberColumns; iColumn++) {
          double value;
          std::cout << std::setw(6) << iColumn << " " << std::setw(8) << (*columnNames)[iColumn];
          value = columnPrimal[iColumn];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          value = columnDual[iColumn];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          value = columnLower[iColumn];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          value = columnUpper[iColumn];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
          value = columnObjective[iColumn];
          if (fabs(value) < 1.0e5)
               std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
          else
               std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;

          std::cout << std::endl;
     }
     std::cout << "--------------------------------------" << std::endl;

     std::cout << std::resetiosflags(std::ios::fixed | std::ios::showpoint | std::ios::scientific);

     // Now matrix
     CoinPackedMatrix * matrix = model2.matrix();

     const double * element = matrix->getElements();
     const int * row = matrix->getIndices();
     const int * start = matrix->getVectorStarts();
     const int * length = matrix->getVectorLengths();

     for (iColumn = 0; iColumn < numberColumns; iColumn++) {
          std::cout << "Column " << iColumn;
          int j;
          for (j = start[iColumn]; j < start[iColumn] + length[iColumn]; j++)
               std::cout << " ( " << row[j] << ", " << element[j] << ")";
          std::cout << std::endl;
     }
     return 0;
}
Пример #8
0
//-----------------------------------------------------------------------------
void CbcSolverLongThin::resolve()
{
  int * whichRow = NULL;
  int * whichColumn = NULL;
  // problem may be small enough to do nested search
  const double * colLower = modelPtr_->columnLower();
  const double * colUpper = modelPtr_->columnUpper();
  
  int numberIntegers = model_->numberIntegers();
  const int * integerVariable = model_->integerVariable();
  int numberRows=modelPtr_->numberRows();
  int numberColumns = modelPtr_->numberColumns();
  
  int i;
  int nFix=0;
  int nNewRow=0;
  int nNewCol=0;
  int sizeDynamic = COIN_INT_MAX;
  int smallOriginalNumberRows=0;
  if (algorithm_==0) {
    for (i=0;i<numberIntegers;i++) {
      int iColumn=integerVariable[i];
      if (colLower[iColumn]==colUpper[iColumn])
        nFix++;
    }
  } else {
    whichRow = new int[numberRows];
    whichColumn = new int [numberColumns];
    // more sophisticated
    OsiCuts cs;
    tryCut->generateCuts(*this,cs);
    int numberCuts = cs.sizeColCuts();
    if (numberCuts) {
      for ( i = 0 ; i < numberCuts ; i++) {
        const OsiColCut *thisCut = cs.colCutPtr(i) ;
	const CoinPackedVector & ubs = thisCut->ubs() ;
	int n = ubs.getNumElements() ;
	const int * which = ubs.getIndices() ;
	const double * values = ubs.getElements() ;
	for (int j = 0;j<n;j++) {
	  int iColumn = which[j] ;
	  this->setColUpper(iColumn,values[j]) ;
        }
      }
    }
#if 1
    const int * duplicate = tryCut->duplicate();
    sizeDynamic = tryCut->sizeDynamic();
    int nOrig = tryCut->numberOriginalRows();
    for (i=0;i<nOrig;i++) {
      if (duplicate[i]==-1)
        whichRow[nNewRow++]=i;
      else
        modelPtr_->setRowStatus(i,ClpSimplex::basic);
    }
    smallOriginalNumberRows=nNewRow;
    for (;i<numberRows;i++) {
      whichRow[nNewRow++]=i;
    }
#else
    for (i=0;i<numberRows;i++) 
      whichRow[i]=i;
    nNewRow=numberRows;
#endif
    for (i=0;i<numberIntegers;i++) {
      int iColumn=integerVariable[i];
      if (colLower[iColumn]==colUpper[iColumn])
        nFix++;
      bool choose;
      if (algorithm_==1)
        choose = true;
      else
        choose = (node_[i]>count_-memory_&&node_[i]>0);
      if ((choose&&colUpper[i])
	  ||(modelPtr_->getStatus(i)!=ClpSimplex::atLowerBound&&
             modelPtr_->getStatus(i)!=ClpSimplex::isFixed)
	  ||colLower[i]>0.0)
	whichColumn[nNewCol++]=i;
    }
  }
  if (nestedSearch_<1.0&&model_&&model_->phase()==2) {
    if (((double) sizeDynamic)*((double) nNewCol)<1000000000&&sizeDynamic<10000000) {
      // could do Dynamic Programming
      // back to original number of rows
      nNewRow = smallOriginalNumberRows;
      // and get rid of any basics
      int nNewCol=0;
      for (i=0;i<numberColumns;i++) {
        if (colUpper[i]||colLower[i]>0.0)
          whichColumn[nNewCol++]=i;
      }
      ClpSimplex temp(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
      int returnCode;
      double * rowLower2 = temp.rowLower();
      double * rowUpper2 = temp.rowUpper();
      int numberColumns2 = temp.numberColumns();
      double * colLower2 = temp.columnLower();
      double * colUpper2 = temp.columnUpper();
      const CoinPackedMatrix * matrix = temp.matrix();
      const double * element = matrix->getElements();
      const int * row = matrix->getIndices();
      const CoinBigIndex * columnStart = matrix->getVectorStarts();
      const int * columnLength = matrix->getVectorLengths();
      double offset=0.0;
      const double * objective = temp.objective();
      bool feasible=true;
      for (i=0;i<numberColumns2;i++) {
        double value = colLower2[i];
        if (value) {
          offset += value*objective[i];
          colLower2[i]=0.0;
          colUpper2[i] -= value;
          for (int j=columnStart[i];
               j<columnStart[i]+columnLength[i];j++) {
            int iRow=row[j];
            rowLower2[iRow] -= value*element[j]; 
            rowUpper2[iRow] -= value*element[j]; 
            if (rowUpper2[iRow]<-1.0e-8) {
              feasible=false;
              printf("odd - problem is infeasible\n");
            }
          }
        }
      }
      temp.setObjectiveOffset(-offset);
      OsiClpSolverInterface temp2(&temp);
      double * solutionDP = NULL;
      if (feasible) {
        for (i=0;i<numberColumns2;i++) 
          temp2.setInteger(i);
        CbcModel modelSmall(temp2);
        modelSmall.messageHandler()->setLogLevel(0);
        CbcFathomDynamicProgramming fathom1(modelSmall);
        // Set maximum space allowed
        fathom1.setMaximumSize(100000000);
        temp2.writeMps("small");
        returnCode=fathom1.fathom(solutionDP);
        if (returnCode!=1) {
          printf("probably not enough memory\n");
          abort();
        }
      }
      if (solutionDP) {
        double objValue = 0.0;
        double * solution = modelPtr_->primalColumnSolution();
        const double * objective = modelPtr_->objective();
        for (i=0;i<numberColumns;i++) 
          solution[i]=colLower[i];
        for (i=0;i<nNewCol;i++) {
          int iColumn = whichColumn[i];
          solution[iColumn]+=solutionDP[i];
        }
        for (i=0;i<numberColumns;i++) 
          objValue += solution[i]*objective[i];
        if (objValue<model_->getCutoff()) {
          printf("good solution %g by dynamic programming\n",objValue);
          returnCode = 0;
          // paranoid check
          double * rowLower = modelPtr_->rowLower();
          double * rowUpper = modelPtr_->rowUpper();
          // Column copy
          const CoinPackedMatrix * matrix2 = modelPtr_->matrix();
          element = matrix2->getElements();
          row = matrix2->getIndices();
          columnStart = matrix2->getVectorStarts();
          columnLength = matrix2->getVectorLengths();
          double * rowActivity = new double [numberRows];
          memset(rowActivity,0,numberRows*sizeof(double));
          for (i=0;i<numberColumns;i++) {
            int j;
            double value = solution[i];
            assert (value>=colLower[i]&&value<=colUpper[i]);
            if (value) {
              printf("%d has value %g\n",i,value);
              for (j=columnStart[i];
                   j<columnStart[i]+columnLength[i];j++) {
                int iRow=row[j];
                rowActivity[iRow] += value*element[j];
              }
            }
          }
          // check was feasible
          bool feasible=true;
          for (i=0;i<numberRows;i++) {
            if(rowActivity[i]<rowLower[i]) {
              if (rowActivity[i]<rowLower[i]-1.0e-8)
                feasible = false;
            } else if(rowActivity[i]>rowUpper[i]) {
              if (rowActivity[i]>rowUpper[i]+1.0e-8)
                feasible = false;
            }
          }
          if (!feasible) {
            printf("** Bad solution by dynamic programming\n");
            abort();
          }
          delete [] rowActivity;
          model_->setBestSolution(CBC_TREE_SOL,objValue,solution);
        } else {
          returnCode=2;
        }
      } else {
        returnCode=2;
      }
      temp2.releaseClp();
      modelPtr_->setProblemStatus(1);
      delete [] whichRow;
      delete [] whichColumn;
      return;
    }
    if (nFix>nestedSearch_*numberIntegers) {
      // Do nested search
      // back to original number of rows
      nNewRow = smallOriginalNumberRows;
      // and get rid of any basics
      int nNewCol=0;
      for (i=0;i<numberColumns;i++) {
        if (colUpper[i]||colLower[i]>0.0)
          whichColumn[nNewCol++]=i;
      }
#if 0
      // We clone from continuous solver so set some stuff
      OsiSolverInterface * solver = model_->continuousSolver();
      CbcSolverLongThin * osiclp = dynamic_cast< CbcSolverLongThin*> (solver);
      assert (osiclp);
      // up special options
      if (osiclp->specialOptions()==3)
	osiclp->setSpecialOptions(7);
      double saveNested = osiclp->getNested();
      int saveAlgorithm = osiclp->getAlgorithm();
      osiclp->setNested(1.0);
      osiclp->setAlgorithm(0);
      int numberObjects = model_->numberObjects();
      if (numberObjects>model_->numberIntegers()) {
	// for now only integers
	//assert (numberObjects == model_->numberIntegers()+1);
	model_->setNumberObjects(model_->numberIntegers());
        // try follow on
	//model_->setNumberObjects(model_->numberIntegers()+1);
      }
      double saveMaxTime = model_->getDblParam(CbcModel::CbcMaximumSeconds);
      model_->setDblParam(CbcModel::CbcMaximumSeconds,1.0e5);
      // up special options
#if 1
      int returnCode= model_->subBranchAndBound(colLower,colUpper,2000);
#else
      CbcModel * model3 = model_->cleanModel(colLower,colUpper);
      // integer presolve
      int returnCode=0;
      CbcModel * model2 = model3->integerPresolve(false);
      if (!model2||!model2->getNumRows()) {
        delete model2;
        delete model3;
        returnCode= 2;
      } else {
        if (handler_->logLevel()>1)
          printf("Reduced model has %d rows and %d columns\n",
                 model2->getNumRows(),model2->getNumCols());
        if (true) {
          OsiSolverInterface * solver = model2->solver();
          OsiSolverInterface * osiclp = dynamic_cast< OsiSolverInterface*> (solver);
          assert (osiclp);
          int * priority = new int [numberColumns+1];
          int n=0;
          int iColumn;
          for ( iColumn=0;iColumn<numberColumns;iColumn++) {
            if (solver->isInteger(iColumn)) {
              priority[n++]=10000;
            }
          }
          priority[n]=1;
          CbcObject * newObject =new CbcFollowOn2(model2);
          model2->addObjects(1,&newObject);
          delete newObject;
          model2->passInPriorities(priority,false);
          delete [] priority;
        }
        returnCode= model_->subBranchAndBound(model3,model2,4000);
      }
#endif
      model_->setDblParam(CbcModel::CbcMaximumSeconds,saveMaxTime);
      model_->setNumberObjects(numberObjects);
      osiclp->setNested(saveNested);
      osiclp->setAlgorithm(saveAlgorithm);
#else
      // start again very simply
      ClpSimplex temp(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
      int returnCode;
      OsiClpSolverInterface temp2(&temp);
      temp2.setupForRepeatedUse(2);
      int numberColumns2 = temp.numberColumns();
      const double * colUpper2 = temp2.getColUpper();
      const double * colLower2 = temp2.getColLower();
      const double * solution2 = temp.getColSolution();
      double * cleanSolution2 = new double [numberColumns2];
      for (i=0;i<numberColumns2;i++) {
        temp2.setInteger(i);
        double value = solution2[i];
        value = CoinMin(CoinMax(value,colLower2[i]),colUpper2[i]);
        cleanSolution2[i] = value;
      }
      temp2.setColSolution(cleanSolution2);
      delete [] cleanSolution2;
      CbcModel modelSmall(temp2);
      modelSmall.setNumberStrong(0);
      CglProbing generator1;
      generator1.setUsingObjective(true);
      generator1.setMaxPass(3);
      generator1.setMaxProbe(100);
      generator1.setMaxLook(50);
      generator1.setRowCuts(3);
      
      CglGomory generator2;
      // try larger limit
      generator2.setLimit(300);
      
      CglKnapsackCover generator3;
      
      CglOddHole generator4;
      generator4.setMinimumViolation(0.005);
      generator4.setMinimumViolationPer(0.00002);
      // try larger limit
      generator4.setMaximumEntries(200);
      
      CglClique generator5;
      generator5.setStarCliqueReport(false);
      generator5.setRowCliqueReport(false);
      
      CglMixedIntegerRounding mixedGen;
      CglFlowCover flowGen;
      
      // Add in generators
      modelSmall.addCutGenerator(&generator1,-1,"Probing",true,false,false,-1);
      modelSmall.addCutGenerator(&generator2,-99,"Gomory",true,false,false,-99);
      modelSmall.addCutGenerator(&generator3,-99,"Knapsack",true,false,false,-99);
      modelSmall.addCutGenerator(&generator4,-99,"OddHole",true,false,false,-99);
      modelSmall.addCutGenerator(&generator5,-99,"Clique",true,false,false,-99);
      modelSmall.addCutGenerator(&flowGen,-99,"FlowCover",true,false,false,-99);
      modelSmall.addCutGenerator(&mixedGen,-99,"MixedIntegerRounding",true,false,false,-100);
#if 1
      const CoinPackedMatrix * matrix = temp2.getMatrixByCol();
      const int * columnLength = matrix->getVectorLengths();
      int * priority = new int [numberColumns2+1];
      // do pseudo costs and priorities - take a reasonable guess
      CbcObject ** objects = new CbcObject * [numberColumns2+1];
      int n=0;
      const double * objective = modelSmall.getObjCoefficients();
      for (i=0;i<numberColumns2;i++) {
        CbcSimpleIntegerPseudoCost * newObject =
          new CbcSimpleIntegerPseudoCost(&modelSmall,n,i,objective[i],0.5*objective[i]);
        newObject->setMethod(3);
        objects[n]= newObject;
        priority[n++]=10000-columnLength[i];
      }
      priority[n]=1;
      objects[n++]=new CbcFollowOn2(&modelSmall);
      modelSmall.addObjects(n,objects);
      for (i=0;i<n;i++)
        delete objects[i];
      delete [] objects;
      modelSmall.passInPriorities(priority,false);
      delete [] priority;
#endif
      modelSmall.setCutoff(model_->getCutoff());
      //if (!onPathX&&modelSmall.getCutoff()>480.5)
      //modelSmall.setCutoff(480.5);
      //printf("cutoff %g\n",model_->getCutoff());
      modelSmall.messageHandler()->setLogLevel(1);
      modelSmall.solver()->messageHandler()->setLogLevel(0);
      modelSmall.messagesPointer()->setDetailMessage(3,9);
      modelSmall.messagesPointer()->setDetailMessage(3,6);
      modelSmall.messagesPointer()->setDetailMessage(3,4);
      modelSmall.messagesPointer()->setDetailMessage(3,13);
      modelSmall.messagesPointer()->setDetailMessage(3,14);
      modelSmall.messagesPointer()->setDetailMessage(3,1);
      modelSmall.messagesPointer()->setDetailMessage(3,3007);
      modelSmall.branchAndBound();
      temp2.releaseClp();
      if (modelSmall.bestSolution()) {
        double objValue = 0.0;
        const double * solution2 = modelSmall.bestSolution();
        double * solution = modelPtr_->primalColumnSolution();
        const double * objective = modelPtr_->objective();
        for (i=0;i<numberColumns;i++) 
          solution[i]=colLower[i];
        for (i=0;i<nNewCol;i++) {
          int iColumn = whichColumn[i];
          solution[iColumn]=solution2[i];
        }
        for (i=0;i<numberColumns;i++) 
          objValue += solution[i]*objective[i];
        assert (objValue<model_->getCutoff());
        if (objValue<model_->getCutoff()) {
          //printf("good solution \n");
          model_->setBestSolution(CBC_TREE_SOL,objValue,solution);
          returnCode = 0;
        } else {
          returnCode=2;
        }
      } else {
        returnCode=2;
      }
#endif
      if (returnCode!=0&&returnCode!=2) {
	printf("pretending entire search done\n");
	returnCode=0;
      }
      if (returnCode==0||returnCode==2) {
	modelPtr_->setProblemStatus(1);
        delete [] whichRow;
        delete [] whichColumn;
	return;
     }
    }
  }
  if ((count_<100&&algorithm_==2)||!algorithm_) {
    delete [] whichRow;
    delete [] whichColumn;
    assert(!modelPtr_->specialOptions());
    int saveOptions = modelPtr_->specialOptions();
    int startFinishOptions;
    bool takeHint;
    OsiHintStrength strength;
    bool gotHint = (getHintParam(OsiDoInBranchAndCut,takeHint,strength));
    assert (gotHint);
    if (strength!=OsiHintIgnore&&takeHint) {
      // could do something - think about it
      //printf("thin hint %d %c\n",strength,takeHint ? 'T' :'F');
    }
    if((specialOptions_&1)==0) {
      startFinishOptions=0;
      modelPtr_->setSpecialOptions(saveOptions|(64|1024));
    } else {
      startFinishOptions=1+2+4;
      if((specialOptions_&4)==0) 
	modelPtr_->setSpecialOptions(saveOptions|(64|128|512|1024|4096));
      else
	modelPtr_->setSpecialOptions(saveOptions|(64|128|512|1024|2048|4096));
    }
    //printf("thin options %d size %d\n",modelPtr_->specialOptions(),modelPtr_->numberColumns());
    setBasis(basis_,modelPtr_);
    //modelPtr_->setLogLevel(1);
    modelPtr_->dual(0,0);
    basis_ = getBasis(modelPtr_);
    modelPtr_->setSpecialOptions(saveOptions);
    if (modelPtr_->status()==0) {
      count_++;
      double * solution = modelPtr_->primalColumnSolution();
      int i;
      for (i=0;i<numberColumns;i++) {
	if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	  node_[i]=CoinMax(count_,node_[i]);
	  howMany_[i]++;
	}
      }
    } else {
      if (!algorithm_==2)
	printf("infeasible early on\n");
    }
  } else {
    // use counts
    int i;
    const double * lower = modelPtr_->columnLower();
    const double * upper = modelPtr_->columnUpper();
    setBasis(basis_,modelPtr_);
    ClpSimplex * temp = new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
    //temp->setLogLevel(2);
    //printf("small has %d rows and %d columns\n",nNewRow,nNewCol);
    temp->setSpecialOptions(128+512);
    temp->setDualObjectiveLimit(1.0e50);
    temp->dual();
    if (temp->status()) {
      // In some cases we know that it must be infeasible
      if (believeInfeasible_||algorithm_==1) {
	modelPtr_->setProblemStatus(1);
	printf("assuming infeasible!\n");
	//modelPtr_->writeMps("infeas.mps");
	//temp->writeMps("infeas2.mps");
	//abort();
	delete temp;
        delete [] whichRow;
	delete [] whichColumn;
	return;
      }
    }
    double * solution = modelPtr_->primalColumnSolution();
    if (!temp->status()) {
      const double * solution2 = temp->primalColumnSolution();
      memset(solution,0,numberColumns*sizeof(double));
      for (i=0;i<nNewCol;i++) {
	int iColumn = whichColumn[i];
	solution[iColumn]=solution2[i];
	modelPtr_->setStatus(iColumn,temp->getStatus(i));
      }
      double * rowSolution = modelPtr_->primalRowSolution();
      const double * rowSolution2 = temp->primalRowSolution();
      double * dual = modelPtr_->dualRowSolution();
      const double * dual2 = temp->dualRowSolution();
      memset(dual,0,numberRows*sizeof(double));
      for (i=0;i<nNewRow;i++) {
        int iRow=whichRow[i];
        modelPtr_->setRowStatus(iRow,temp->getRowStatus(i));
        rowSolution[iRow]=rowSolution2[i];
        dual[iRow]=dual2[i];
      }
      // See if optimal
      double * dj = modelPtr_->dualColumnSolution();
      // get reduced cost for large problem
      // this assumes minimization
      memcpy(dj,modelPtr_->objective(),numberColumns*sizeof(double));
      modelPtr_->transposeTimes(-1.0,dual,dj);
      modelPtr_->setObjectiveValue(temp->objectiveValue());
      modelPtr_->setProblemStatus(0);
      int nBad=0;
      
      for (i=0;i<numberColumns;i++) {
	if (modelPtr_->getStatus(i)==ClpSimplex::atLowerBound
	    &&upper[i]>lower[i]&&dj[i]<-1.0e-5)
	  nBad++;
      }
      //modelPtr_->writeMps("bada.mps");
      //temp->writeMps("badb.mps");
      if (nBad) {
        assert (algorithm_==2);
	//printf("%d bad\n",nBad);
	timesBad_++;
	modelPtr_->primal();
      }
    } else {
      // infeasible - do all
      modelPtr_->setSpecialOptions(64+128+512);
      setBasis(basis_,modelPtr_);
      //modelPtr_->setLogLevel(1);
      modelPtr_->dual(0,0);
      basis_ = getBasis(modelPtr_);
      modelPtr_->setSpecialOptions(0);
      if (modelPtr_->status()) {
	printf("really infeasible!\n");
	delete temp;
        delete [] whichRow;
	delete [] whichColumn;
	return;
      } else {
	printf("initially infeasible\n");
      }
    }
    delete temp;
    delete [] whichRow;
    delete [] whichColumn;
    basis_ = getBasis(modelPtr_);
    modelPtr_->setSpecialOptions(0);
    count_++;
    if ((count_%100)==0&&algorithm_==2)
      printf("count %d, bad %d\n",count_,timesBad_);
    for (i=0;i<numberColumns;i++) {
      if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	node_[i]=CoinMax(count_,node_[i]);
	howMany_[i]++;
      }
    }
    if (modelPtr_->objectiveValue()>=modelPtr_->dualObjectiveLimit())
      modelPtr_->setProblemStatus(1);
  }
}
Пример #9
0
int main(int argc, const char *argv[])
{
     ClpSimplex  model;
     int status;
     // Keep names
     if (argc < 2) {
          status = model.readMps("small.mps", true);
     } else {
          status = model.readMps(argv[1], true);
     }
     if (status)
          exit(10);
     /*
       This driver implements the presolve variation of Sprint.
       This assumes we can get feasible easily
     */

     int numberRows = model.numberRows();
     int numberColumns = model.numberColumns();

     // We will need arrays to choose variables.  These are too big but ..
     double * weight = new double [numberRows+numberColumns];
     int * sort = new int [numberRows+numberColumns];

     double * columnLower = model.columnLower();
     double * columnUpper = model.columnUpper();
     double * saveLower = new double [numberColumns];
     memcpy(saveLower, columnLower, numberColumns * sizeof(double));
     double * saveUpper = new double [numberColumns];
     memcpy(saveUpper, columnUpper, numberColumns * sizeof(double));
     double * solution = model.primalColumnSolution();
     // Fix in some magical way so remaining problem is easy
#if 0
     // This is from a real-world problem
     for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
          char firstCharacter = model.columnName(iColumn)[0];
          if (firstCharacter == 'F' || firstCharacter == 'P'
                    || firstCharacter == 'L' || firstCharacter == 'T') {
               columnUpper[iColumn] = columnLower[iColumn];
          }
     }
#else
     double * obj = model.objective();
     double * saveObj = new double [numberColumns];
     memcpy(saveObj, obj, numberColumns * sizeof(double));
     memset(obj, 0, numberColumns * sizeof(double));
     model.dual();
     memcpy(obj, saveObj, numberColumns * sizeof(double));
     delete [] saveObj;
     for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
         if (solution[iColumn]<columnLower[iColumn]+1.0e-8) {
	     columnUpper[iColumn] = columnLower[iColumn];
       }
     }
#endif

     // Just do this number of passes
     int maxPass = 100;
     int iPass;
     double lastObjective = 1.0e31;

     // Just take this number of columns in small problem
     int smallNumberColumns = 3 * numberRows;
     // And we want number of rows to be this
     int smallNumberRows = numberRows / 4;

     for (iPass = 0; iPass < maxPass; iPass++) {
          printf("Start of pass %d\n", iPass);
          ClpSimplex * model2;
          ClpPresolve pinfo;
          int numberPasses = 1; // can change this
          model2 = pinfo.presolvedModel(model, 1.0e-8, false, numberPasses, false);
          if (!model2) {
               fprintf(stdout, "ClpPresolve says %s is infeasible with tolerance of %g\n",
                       argv[1], 1.0e-8);
               // model was infeasible - maybe try again with looser tolerances
               model2 = pinfo.presolvedModel(model, 1.0e-7, false, numberPasses, false);
               if (!model2) {
                    fprintf(stdout, "ClpPresolve says %s is infeasible with tolerance of %g\n",
                            argv[1], 1.0e-7);
                    exit(2);
               }
          }
          // change factorization frequency from 200
          model2->setFactorizationFrequency(100 + model2->numberRows() / 50);
          model2->primal();
          pinfo.postsolve(true);

          // adjust smallNumberColumns if necessary
          if (iPass) {
               double ratio = ((double) smallNumberRows) / ((double) model2->numberRows());
               smallNumberColumns = (int)(smallNumberColumns * ratio);
          }
          delete model2;
          /* After this postsolve model should be optimal.
             We can use checkSolution and test feasibility */
          model.checkSolution();
          if (model.numberDualInfeasibilities() ||
                    model.numberPrimalInfeasibilities())
               printf("%g dual %g(%d) Primal %g(%d)\n",
                      model.objectiveValue(),
                      model.sumDualInfeasibilities(),
                      model.numberDualInfeasibilities(),
                      model.sumPrimalInfeasibilities(),
                      model.numberPrimalInfeasibilities());
          // Put back true bounds
          memcpy(columnLower, saveLower, numberColumns * sizeof(double));
          memcpy(columnUpper, saveUpper, numberColumns * sizeof(double));
          if ((model.objectiveValue() > lastObjective - 1.0e-7 && iPass > 5) ||
                    iPass == maxPass - 1) {
               break; // finished
          } else {
               lastObjective = model.objectiveValue();
               // now massage weight so all basic in plus good djs
	       const double * djs = model.dualColumnSolution();
               for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
                    double dj = djs[iColumn];
                    double value = solution[iColumn];
                    if (model.getStatus(iColumn) == ClpSimplex::basic)
                         dj = -1.0e50;
                    else if (dj < 0.0 && value < columnUpper[iColumn])
                         dj = dj;
                    else if (dj > 0.0 && value > columnLower[iColumn])
                         dj = -dj;
                    else if (columnUpper[iColumn] > columnLower[iColumn])
                         dj = fabs(dj);
                    else
                         dj = 1.0e50;
                    weight[iColumn] = dj;
                    sort[iColumn] = iColumn;
               }
               // sort
               CoinSort_2(weight, weight + numberColumns, sort);
               // and fix others
               for (int iColumn = smallNumberColumns; iColumn < numberColumns; iColumn++) {
                    int kColumn = sort[iColumn];
                    double value = solution[kColumn];
                    columnLower[kColumn] = value;
                    columnUpper[kColumn] = value;
               }
          }
     }
     delete [] weight;
     delete [] sort;
     delete [] saveLower;
     delete [] saveUpper;
     model.primal(1);
     return 0;
}
Пример #10
0
//-----------------------------------------------------------------------------
void CbcSolver2::resolve()
{
  int numberColumns = modelPtr_->numberColumns();
  if ((count_<10&&algorithm_==2)||!algorithm_) {
    OsiClpSolverInterface::resolve();
    if (modelPtr_->status()==0) {
      count_++;
      double * solution = modelPtr_->primalColumnSolution();
      int i;
      for (i=0;i<numberColumns;i++) {
	if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	  node_[i]=CoinMax(count_,node_[i]);
	  howMany_[i]++;
	}
      }
    } else {
      if (!algorithm_==2)
	printf("infeasible early on\n");
    }
  } else {
    // use counts
    int numberRows=modelPtr_->numberRows();
    int * whichRow = new int[numberRows];
    int * whichColumn = new int [numberColumns];
    int i;
    const double * lower = modelPtr_->columnLower();
    const double * upper = modelPtr_->columnUpper();
    const double * rowUpper = modelPtr_->rowUpper();
    bool equality=false;
    for (i=0;i<numberRows;i++) {
      if (rowUpper[i]==1.0) {
        equality=true;
        break;
      }
    }
    setBasis(basis_,modelPtr_);
    int nNewCol=0;
    // Column copy
    //const double * element = modelPtr_->matrix()->getElements();
    const int * row = modelPtr_->matrix()->getIndices();
    const CoinBigIndex * columnStart = modelPtr_->matrix()->getVectorStarts();
    const int * columnLength = modelPtr_->matrix()->getVectorLengths();
    
    int * rowActivity = new int[numberRows];
    memset(rowActivity,0,numberRows*sizeof(int));
    int * rowActivity2 = new int[numberRows];
    memset(rowActivity2,0,numberRows*sizeof(int));
    char * mark = new char[numberColumns];
    memset(mark,0,numberColumns);
    // Get rows which are satisfied
    for (i=0;i<numberColumns;i++) {
      if (lower[i]>0.0) {
        CoinBigIndex j;
        for (j=columnStart[i];
             j<columnStart[i]+columnLength[i];j++) {
          int iRow=row[j];
          rowActivity2[iRow] ++;
        }
      } else if (!upper[i]) {
        mark[i]=2; // no good
      }
    }
    // If equality - check not infeasible
    if (equality) {
      bool feasible=true;
      for (i=0;i<numberRows;i++) {
        if (rowActivity2[i]>1) {
          feasible=false;
          break;
        }
      }
      if (!feasible) {
        delete [] rowActivity;
        delete [] rowActivity2;
        modelPtr_->setProblemStatus(1);
        delete [] whichRow;
        delete [] whichColumn;
        delete [] mark;
        printf("infeasible by inspection (over)\n");
        return;
      }
    }
    int nNoGood=0;
    for (i=0;i<numberColumns;i++) {
      if (mark[i]==2) {
        nNoGood++;
        continue;
      }
      bool choose;
      if (algorithm_==1)
        choose = true;
      else
        choose = (node_[i]>count_-memory_&&node_[i]>0);
      bool any;
      if (equality) {
        // See if forced to be zero
        CoinBigIndex j;
        any=true;
        for (j=columnStart[i];
             j<columnStart[i]+columnLength[i];j++) {
          int iRow=row[j];
          if (rowActivity2[iRow])
            any=false; // can't be in
        }
      } else {
        // See if not useful
        CoinBigIndex j;
        any=false;
        for (j=columnStart[i];
             j<columnStart[i]+columnLength[i];j++) {
          int iRow=row[j];
          if (!rowActivity2[iRow])
            any=true; // useful
        }
      }
      if (!any&&!lower[i]) {
        choose=false;
        // and say can't be useful
        mark[i]=2;
        nNoGood++;
      }
      if (strategy_&&modelPtr_->getColumnStatus(i)==ClpSimplex::basic)
        choose=true;
      if (choose||lower[i]>0.0) {
        mark[i]=1;
	whichColumn[nNewCol++]=i;
        CoinBigIndex j;
        double value = upper[i];
        if (value) {
          for (j=columnStart[i];
               j<columnStart[i]+columnLength[i];j++) {
            int iRow=row[j];
            rowActivity[iRow] ++;
          }
        }
      }
    }
    // If equality add in slacks
    CoinModel build;
    if (equality) {
      int row=0;
      for (i=0;i<numberRows;i++) {
        // put in all rows if wanted
        if(strategy_)
          rowActivity2[i]=0;
        if (!rowActivity2[i]) {
          double element=1.0;
          build.addColumn(1,&row,&element,0.0,1.0,1.0e8); // large cost
          row++;
        }
      }
    }
    int nOK=0;
    int nNewRow=0;
    for (i=0;i<numberRows;i++) {
      if (rowActivity[i])
        nOK++;
      if (!rowActivity2[i])
        whichRow[nNewRow++]=i; // not satisfied
      else
        modelPtr_->setRowStatus(i,ClpSimplex::basic); // make slack basic
    }
    if (nOK<numberRows) {
      for (i=0;i<numberColumns;i++) {
        if (!mark[i]) {
          CoinBigIndex j;
          int good=0;
          for (j=columnStart[i];
               j<columnStart[i]+columnLength[i];j++) {
            int iRow=row[j];
            if (!rowActivity[iRow]) {
              rowActivity[iRow] ++;
              good++;
            }
          }
          if (good) {
            nOK+=good;
            whichColumn[nNewCol++]=i;
          }
        }
      }
    }
    delete [] rowActivity;
    delete [] rowActivity2;
    if (nOK<numberRows) {
      modelPtr_->setProblemStatus(1);
      delete [] whichRow;
      delete [] whichColumn;
      delete [] mark;
      printf("infeasible by inspection\n");
      return;
    }
    bool allIn=false;
    if (nNewCol+nNoGood+numberRows>numberColumns) {
      // add in all
      allIn=true;
      for (i=0;i<numberColumns;i++) {
        if (!mark[i]) {
          whichColumn[nNewCol++]=i;
        }
      }
    }
    ClpSimplex *  temp = new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
    if (equality)
      temp->addColumns(build);
    temp->setLogLevel(1);
    printf("small has %d rows and %d columns (%d impossible to help) %s\n",
           nNewRow,nNewCol,nNoGood,allIn ? "all in" : "");
    temp->setSpecialOptions(128+512);
    temp->setDualObjectiveLimit(1.0e50);
    temp->dual();
    assert (!temp->status());
    double * solution = modelPtr_->primalColumnSolution();
    const double * solution2 = temp->primalColumnSolution();
    memset(solution,0,numberColumns*sizeof(double));
    for (i=0;i<nNewCol;i++) {
      int iColumn = whichColumn[i];
      solution[iColumn]=solution2[i];
      modelPtr_->setStatus(iColumn,temp->getStatus(i));
    }
    double * rowSolution = modelPtr_->primalRowSolution();
    const double * rowSolution2 = temp->primalRowSolution();
    double * dual = modelPtr_->dualRowSolution();
    const double * dual2 = temp->dualRowSolution();
    memset(dual,0,numberRows*sizeof(double));
    for (i=0;i<nNewRow;i++) {
      int iRow=whichRow[i];
      modelPtr_->setRowStatus(iRow,temp->getRowStatus(i));
      rowSolution[iRow]=rowSolution2[i];
      dual[iRow]=dual2[i];
    }
    // See if optimal
    double * dj = modelPtr_->dualColumnSolution();
    // get reduced cost for large problem
    // this assumes minimization
    memcpy(dj,modelPtr_->objective(),numberColumns*sizeof(double));
    modelPtr_->transposeTimes(-1.0,dual,dj);
    modelPtr_->setObjectiveValue(temp->objectiveValue());
    modelPtr_->setProblemStatus(0);
    int nBad=0;
    for (i=0;i<numberColumns;i++) {
      if (modelPtr_->getStatus(i)==ClpSimplex::atLowerBound
          &&upper[i]>lower[i]&&dj[i]<-1.0e-5)
        nBad++;
    }
    //modelPtr_->writeMps("bada.mps");
    //temp->writeMps("badb.mps");
    delete temp;
    if (nBad&&!allIn) {
      assert (algorithm_==2);
      //printf("%d bad\n",nBad);
      timesBad_++;
      // just non mark==2
      int nAdded=0;
      for (i=0;i<numberColumns;i++) {
        if (!mark[i]) {
          whichColumn[nNewCol++]=i;
          nAdded++;
        }
      }
      assert (nAdded);
      {
        temp = new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
        if (equality)
          temp->addColumns(build);
        temp->setLogLevel(2);
        temp->setSpecialOptions(128+512);
        temp->setDualObjectiveLimit(1.0e50);
        temp->primal(1);
        assert (!temp->status());
        double * solution = modelPtr_->primalColumnSolution();
        const double * solution2 = temp->primalColumnSolution();
        memset(solution,0,numberColumns*sizeof(double));
        for (i=0;i<nNewCol;i++) {
          int iColumn = whichColumn[i];
          solution[iColumn]=solution2[i];
          modelPtr_->setStatus(iColumn,temp->getStatus(i));
        }
        double * rowSolution = modelPtr_->primalRowSolution();
        const double * rowSolution2 = temp->primalRowSolution();
        double * dual = modelPtr_->dualRowSolution();
        const double * dual2 = temp->dualRowSolution();
        memset(dual,0,numberRows*sizeof(double));
        for (i=0;i<nNewRow;i++) {
          int iRow=whichRow[i];
          modelPtr_->setRowStatus(iRow,temp->getRowStatus(i));
          rowSolution[iRow]=rowSolution2[i];
          dual[iRow]=dual2[i];
        }
        modelPtr_->setObjectiveValue(temp->objectiveValue());
        modelPtr_->setProblemStatus(0);
        iterationsBad_ += temp->numberIterations();
        printf("clean %d\n",temp->numberIterations());
        delete temp;
      }
    }
    delete [] mark;
    delete [] whichRow;
    delete [] whichColumn;
    basis_ = getBasis(modelPtr_);
    modelPtr_->setSpecialOptions(0);
    count_++;
    if ((count_%100)==0&&algorithm_==2)
      printf("count %d, bad %d - iterations %d\n",count_,timesBad_,iterationsBad_);
    for (i=0;i<numberColumns;i++) {
      if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	node_[i]=CoinMax(count_,node_[i]);
	howMany_[i]++;
      }
    }
    if (modelPtr_->objectiveValue()>=modelPtr_->dualObjectiveLimit())
      modelPtr_->setProblemStatus(1);
  }
}
Пример #11
0
int main(int argc, const char *argv[])
{
     ClpSimplex  model;
     int status;

     if (argc < 2) {
#if defined(SAMPLEDIR)
          status = model.readMps(SAMPLEDIR "/p0033.mps", true);
#else
          fprintf(stderr, "Do not know where to find sample MPS files.\n");
          exit(1);
#endif
     } else
          status = model.readMps(argv[1], true);
     if( status != 0 )
     {
        printf("Error %d reading MPS file\n", status);
        return status;
     }
     /*
       This driver uses volume algorithm
       then does dual - after adjusting costs
       then solves real problem
     */

     // do volume for a bit
     VOL_problem volprob;
     const CoinPackedMatrix* mat = model.matrix();
     const int psize = mat->getNumCols();
     const int dsize = mat->getNumRows();
     char * sense = new char[dsize];
     double * rhs = new double[dsize];
     const double * rowLower = model.rowLower();
     const double * rowUpper = model.rowUpper();
     // Set the lb/ub on the duals
     volprob.dsize = dsize;
     volprob.psize = psize;
     volprob.dual_lb.allocate(dsize);
     volprob.dual_ub.allocate(dsize);
     volprob.dsol.allocate(dsize);
     int i;
     for (i = 0; i < dsize; ++i) {
          if (rowUpper[i] == rowLower[i]) {
               // 'E':
               volprob.dual_lb[i] = -1.0e31;
               volprob.dual_ub[i] = 1.0e31;
               rhs[i] = rowUpper[i];
               sense[i] = 'E';
          } else if (rowLower[i] < -0.99e10 && rowUpper[i] < 0.99e10) {
               // 'L':
               volprob.dual_lb[i] = -1.0e31;
               volprob.dual_ub[i] = 0.0;
               rhs[i] = rowUpper[i];
               sense[i] = 'L';
          } else if (rowLower[i] > -0.99e10 && rowUpper[i] > 0.99e10) {
               // 'G':
               volprob.dual_lb[i] = 0.0;
               volprob.dual_ub[i] = 1.0e31;
               rhs[i] = rowLower[i];
               sense[i] = 'G';
          } else {
               printf("Volume Algorithm can't work if there is a non ELG row\n");
               abort();
          }
     }
     // Can't use read_param as private
     // anyway I want automatic use - so maybe this is problem
#if 0
     FILE* infile = fopen("parameters", "r");
     if (!infile) {
          printf("Failure to open parameter file\n");
     } else {
          volprob.read_params("parameters");
     }
#endif
#if 0
     // should save and restore bounds
     model.tightenPrimalBounds();
#else
     double * colUpper = model.columnUpper();
     for (i = 0; i < psize; i++)
          colUpper[i] = 1.0;
#endif
     lpHook myHook(model.getColLower(), model.getColUpper(),
                   model.getObjCoefficients(),
                   rhs, sense, *mat);
     // move duals
     double * pi = model.dualRowSolution();
     memcpy(volprob.dsol.v, pi, dsize * sizeof(double));
     volprob.solve(myHook,  false /* not warmstart */);
     // For now stop as not doing any good
     exit(77);
     // create objectives
     int numberRows = model.numberRows();
     int numberColumns = model.numberColumns();
     memcpy(pi, volprob.dsol.v, numberRows * sizeof(double));
#define MODIFYCOSTS
#ifdef MODIFYCOSTS
     double * saveObj = new double[numberColumns];
     memcpy(saveObj, model.objective(), numberColumns * sizeof(double));
     memcpy(model.dualColumnSolution(), model.objective(),
            numberColumns * sizeof(double));
     model.clpMatrix()->transposeTimes(-1.0, pi, model.dualColumnSolution());
     memcpy(model.objective(), model.dualColumnSolution(),
            numberColumns * sizeof(double));
     const double * rowsol = model.primalRowSolution();
     //const double * rowLower = model.rowLower();
     //const double * rowUpper = model.rowUpper();
     double offset = 0.0;
     for (i = 0; i < numberRows; i++) {
          offset += pi[i] * rowsol[i];
     }
     double value2;
     model.getDblParam(ClpObjOffset, value2);
     printf("Offset %g %g\n", offset, value2);
     model.setRowObjective(pi);
     // zero out pi
     memset(pi, 0, numberRows * sizeof(double));
#endif
     // Could put some in basis - only partially tested
     model.allSlackBasis();
     model.factorization()->maximumPivots(1000);
     //model.setLogLevel(63);
     // solve
     model.dual(1);
     //model.primal(1);
#ifdef MODIFYCOSTS
     memcpy(model.objective(), saveObj, numberColumns * sizeof(double));
     // zero out pi
     memset(pi, 0, numberRows * sizeof(double));
     model.setRowObjective(pi);
     delete [] saveObj;
     model.primal();
#endif

     return 0;
}