SDValue ARM64SelectionDAGInfo::EmitTargetCodeForMemset( SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVolatile, MachinePointerInfo DstPtrInfo) const { // Check to see if there is a specialized entry-point for memory zeroing. ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); ConstantSDNode *SizeValue = dyn_cast<ConstantSDNode>(Size); const char *bzeroEntry = (V && V->isNullValue()) ? Subtarget->getBZeroEntry() : 0; // For small size (< 256), it is not beneficial to use bzero // instead of memset. if (bzeroEntry && (!SizeValue || SizeValue->getZExtValue() > 256)) { const ARM64TargetLowering &TLI = *static_cast<const ARM64TargetLowering *>( DAG.getTarget().getTargetLowering()); EVT IntPtr = TLI.getPointerTy(); Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Dst; Entry.Ty = IntPtrTy; Args.push_back(Entry); Entry.Node = Size; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI( Chain, Type::getVoidTy(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*doesNotRet=*/false, /*isReturnValueUsed=*/false, DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl); std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); return CallResult.second; } return SDValue(); }
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVolatile, MachinePointerInfo DstPtrInfo) const { ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); // If to a segment-relative address space, use the default lowering. if (DstPtrInfo.getAddrSpace() >= 256) return SDValue(); // If not DWORD aligned or size is more than the threshold, call the library. // The libc version is likely to be faster for these cases. It can use the // address value and run time information about the CPU. if ((Align & 3) != 0 || !ConstantSize || ConstantSize->getZExtValue() > Subtarget->getMaxInlineSizeThreshold()) { // Check to see if there is a specialized entry-point for memory zeroing. ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); if (const char *bzeroEntry = V && V->isNullValue() ? Subtarget->getBZeroEntry() : nullptr) { EVT IntPtr = TLI.getPointerTy(); Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Dst; Entry.Ty = IntPtrTy; Args.push_back(Entry); Entry.Node = Size; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(Chain) .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol(bzeroEntry, IntPtr), &Args, 0) .setDiscardResult(); std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); return CallResult.second; } // Otherwise have the target-independent code call memset. return SDValue(); } uint64_t SizeVal = ConstantSize->getZExtValue(); SDValue InFlag; EVT AVT; SDValue Count; ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); unsigned BytesLeft = 0; bool TwoRepStos = false; if (ValC) { unsigned ValReg; uint64_t Val = ValC->getZExtValue() & 255; // If the value is a constant, then we can potentially use larger sets. switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; ValReg = X86::AX; Val = (Val << 8) | Val; break; case 0: // DWORD aligned AVT = MVT::i32; ValReg = X86::EAX; Val = (Val << 8) | Val; Val = (Val << 16) | Val; if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned AVT = MVT::i64; ValReg = X86::RAX; Val = (Val << 32) | Val; } break; default: // Byte aligned AVT = MVT::i8; ValReg = X86::AL; Count = DAG.getIntPtrConstant(SizeVal); break; } if (AVT.bitsGT(MVT::i8)) { unsigned UBytes = AVT.getSizeInBits() / 8; Count = DAG.getIntPtrConstant(SizeVal / UBytes); BytesLeft = SizeVal % UBytes; } Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT), InFlag); InFlag = Chain.getValue(1); } else { AVT = MVT::i8; Count = DAG.getIntPtrConstant(SizeVal); Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag); InFlag = Chain.getValue(1); } Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : X86::EDI, Dst, InFlag); InFlag = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); if (TwoRepStos) { InFlag = Chain.getValue(1); Count = Size; EVT CVT = Count.getValueType(); SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count, DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX : X86::ECX, Left, InFlag); InFlag = Chain.getValue(1); Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag }; Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); } else if (BytesLeft) { // Handle the last 1 - 7 bytes. unsigned Offset = SizeVal - BytesLeft; EVT AddrVT = Dst.getValueType(); EVT SizeVT = Size.getValueType(); Chain = DAG.getMemset(Chain, dl, DAG.getNode(ISD::ADD, dl, AddrVT, Dst, DAG.getConstant(Offset, AddrVT)), Src, DAG.getConstant(BytesLeft, SizeVT), Align, isVolatile, DstPtrInfo.getWithOffset(Offset)); } // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. return Chain; }
static bool isZero(SDValue V) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); return C && C->isNullValue(); }
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, SDValue Size, unsigned Align, bool isVolatile, MachinePointerInfo DstPtrInfo) const { ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); const X86Subtarget &Subtarget = DAG.getMachineFunction().getSubtarget<X86Subtarget>(); #ifndef NDEBUG // If the base register might conflict with our physical registers, bail out. const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, X86::ECX, X86::EAX, X86::EDI}; assert(!isBaseRegConflictPossible(DAG, ClobberSet)); #endif // If to a segment-relative address space, use the default lowering. if (DstPtrInfo.getAddrSpace() >= 256) return SDValue(); // If not DWORD aligned or size is more than the threshold, call the library. // The libc version is likely to be faster for these cases. It can use the // address value and run time information about the CPU. if ((Align & 3) != 0 || !ConstantSize || ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) { // Check to see if there is a specialized entry-point for memory zeroing. ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); if (const char *bzeroName = (ValC && ValC->isNullValue()) ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO) : nullptr) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Dst; Entry.Ty = IntPtrTy; Args.push_back(Entry); Entry.Node = Size; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol(bzeroName, IntPtr), std::move(Args)) .setDiscardResult(); std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); return CallResult.second; } // Otherwise have the target-independent code call memset. return SDValue(); } uint64_t SizeVal = ConstantSize->getZExtValue(); SDValue InFlag; EVT AVT; SDValue Count; ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); unsigned BytesLeft = 0; if (ValC) { unsigned ValReg; uint64_t Val = ValC->getZExtValue() & 255; // If the value is a constant, then we can potentially use larger sets. switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; ValReg = X86::AX; Val = (Val << 8) | Val; break; case 0: // DWORD aligned AVT = MVT::i32; ValReg = X86::EAX; Val = (Val << 8) | Val; Val = (Val << 16) | Val; if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned AVT = MVT::i64; ValReg = X86::RAX; Val = (Val << 32) | Val; } break; default: // Byte aligned AVT = MVT::i8; ValReg = X86::AL; Count = DAG.getIntPtrConstant(SizeVal, dl); break; } if (AVT.bitsGT(MVT::i8)) { unsigned UBytes = AVT.getSizeInBits() / 8; Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); BytesLeft = SizeVal % UBytes; } Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), InFlag); InFlag = Chain.getValue(1); } else { AVT = MVT::i8; Count = DAG.getIntPtrConstant(SizeVal, dl); Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag); InFlag = Chain.getValue(1); } bool Use64BitRegs = Subtarget.isTarget64BitLP64(); Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI, Dst, InFlag); InFlag = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); if (BytesLeft) { // Handle the last 1 - 7 bytes. unsigned Offset = SizeVal - BytesLeft; EVT AddrVT = Dst.getValueType(); EVT SizeVT = Size.getValueType(); Chain = DAG.getMemset(Chain, dl, DAG.getNode(ISD::ADD, dl, AddrVT, Dst, DAG.getConstant(Offset, dl, AddrVT)), Val, DAG.getConstant(BytesLeft, dl, SizeVT), Align, isVolatile, false, DstPtrInfo.getWithOffset(Offset)); } // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. return Chain; }