Пример #1
0
/** Find an equivalent region of the two specified paths, starting the
 * alignment at pivot1 of path1 and pivot2 of path2.
 * @param[out] orientation the orientation of the alignment
 * @return the consensus sequence
 */
static ContigPath align(const Lengths& lengths,
		const ContigPath& p1, const ContigPath& p2,
		ContigPath::const_iterator pivot1,
		ContigPath::const_iterator pivot2,
		dir_type& orientation)
{
	assert(*pivot1 == *pivot2);
	ContigPath::const_reverse_iterator
		rit1 = ContigPath::const_reverse_iterator(pivot1+1),
		rit2 = ContigPath::const_reverse_iterator(pivot2+1);
	ContigPath alignmentr(p1.rend() - rit1 + p2.rend() - rit2);
	ContigPath::iterator rout = alignmentr.begin();
	dir_type alignedr = align(lengths,
			rit1, p1.rend(), rit2, p2.rend(), rout);
	alignmentr.erase(rout, alignmentr.end());

	ContigPath::const_iterator it1 = pivot1, it2 = pivot2;
	ContigPath alignmentf(p1.end() - it1 + p2.end() - it2);
	ContigPath::iterator fout = alignmentf.begin();
	dir_type alignedf = align(lengths,
			it1, p1.end(), it2, p2.end(), fout);
	alignmentf.erase(fout, alignmentf.end());

	ContigPath consensus;
	if (alignedr != DIR_X && alignedf != DIR_X) {
		// Found an alignment.
		assert(!alignmentf.empty());
		assert(!alignmentr.empty());
		consensus.reserve(alignmentr.size()-1 + alignmentf.size());
		consensus.assign(alignmentr.rbegin(), alignmentr.rend()-1);
		consensus.insert(consensus.end(),
				alignmentf.begin(), alignmentf.end());

		// Determine the orientation of the alignment.
		unsigned dirs = alignedr << 2 | alignedf;
		static const dir_type DIRS[16] = {
			DIR_X, // 0000 XX impossible
			DIR_X, // 0001 XF impossible
			DIR_X, // 0010 XR impossible
			DIR_X, // 0011 XB impossible
			DIR_X, // 0100 FX impossible
			DIR_B, // 0101 FF u is subsumed in v
			DIR_R, // 0110 FR v->u
			DIR_R, // 0111 FB v->u
			DIR_X, // 1000 RX impossible
			DIR_F, // 1001 RF u->v
			DIR_B, // 1010 RR v is subsumed in u
			DIR_F, // 1011 RB u->v
			DIR_X, // 1100 BX impossible
			DIR_F, // 1101 BF u->v
			DIR_R, // 1110 BR v->u
			DIR_B, // 1111 BB u and v are equal
		};
		assert(dirs < 16);
		orientation = DIRS[dirs];
		assert(orientation != DIR_X);
	}
	return consensus;
}
Пример #2
0
/** Return an ambiguous path that agrees with all the given paths. */
static ContigPath constructAmbiguousPath(const Graph &g,
		const ContigNode& origin, const ContigPaths& paths)
{
	assert(!paths.empty());

	// Find the size of the smallest path.
	const ContigPath& firstSol = paths.front();
	size_t min_len = firstSol.size();
	for (ContigPaths::const_iterator it = paths.begin() + 1;
			it != paths.end(); ++it)
		min_len = min(min_len, it->size());

	// Find the longest prefix.
	ContigPath vppath;
	size_t longestPrefix;
	bool commonPrefix = true;
	for (longestPrefix = 0;
			longestPrefix < min_len; longestPrefix++) {
		const ContigNode& common_path_node = firstSol[longestPrefix];
		for (ContigPaths::const_iterator solIter = paths.begin();
				solIter != paths.end(); ++solIter) {
			const ContigNode& pathnode = (*solIter)[longestPrefix];
			if (pathnode != common_path_node) {
				// Found the longest prefix.
				commonPrefix = false;
				break;
			}
		}
		if (!commonPrefix)
			break;
		vppath.push_back(common_path_node);
	}

	// Find the longest suffix.
	ContigPath vspath;
	size_t longestSuffix;
	bool commonSuffix = true;
	for (longestSuffix = 0;
			longestSuffix < min_len-longestPrefix; longestSuffix++) {
		const ContigNode& common_path_node
			= firstSol[firstSol.size()-longestSuffix-1];
		for (ContigPaths::const_iterator solIter = paths.begin();
				solIter != paths.end(); ++solIter) {
			const ContigNode& pathnode
				= (*solIter)[solIter->size()-longestSuffix-1];
			if (pathnode != common_path_node) {
				// Found the longest suffix.
				commonSuffix = false;
				break;
			}
		}
		if (!commonSuffix)
			break;
		vspath.push_back(common_path_node);
	}

	ContigPath out;
	out.reserve(vppath.size() + 1 + vspath.size());
	out.insert(out.end(), vppath.begin(), vppath.end());
	if (longestSuffix > 0) {
		const ContigPath& longestPath(
				*max_element(paths.begin(), paths.end(),
					ComparePathLength(g, origin)));
		unsigned length = calculatePathLength(g, origin, longestPath,
				longestPrefix, longestSuffix);

		// Account for the overlap on the right.
		int dist = length + getDistance(g,
				longestSuffix == longestPath.size() ? origin
				: *(longestPath.rbegin() + longestSuffix),
				*(longestPath.rbegin() + longestSuffix - 1));

		// Add k-1 because it is the convention.
		int numN = dist + opt::k - 1;
		assert(numN > 0);

		out.push_back(ContigNode(numN, 'N'));
		out.insert(out.end(), vspath.rbegin(), vspath.rend());
	}
	return out;
}