inline void CoverTree<MetricType, StatisticType, MatType, RootPointPolicy>:: RemoveNewImplicitNodes() { // If we created an implicit node, take its self-child instead (this could // happen multiple times). while (children[children.size() - 1]->NumChildren() == 1) { CoverTree* old = children[children.size() - 1]; children.erase(children.begin() + children.size() - 1); // Now take its child. children.push_back(&(old->Child(0))); // Set its parent and parameters correctly, and rebuild the statistic. old->Child(0).Parent() = this; old->Child(0).ParentDistance() = old->ParentDistance(); old->Child(0).DistanceComps() = old->DistanceComps(); old->Child(0).Stat() = StatisticType(old->Child(0)); // Remove its child (so it doesn't delete it). old->Children().erase(old->Children().begin() + old->Children().size() - 1); // Now delete it. delete old; } }
CoverTree<MetricType, StatisticType, MatType, RootPointPolicy>::CoverTree( MatType&& data, MetricType& metric, const ElemType base) : dataset(new MatType(std::move(data))), point(RootPointPolicy::ChooseRoot(dataset)), scale(INT_MAX), base(base), numDescendants(0), parent(NULL), parentDistance(0), furthestDescendantDistance(0), localMetric(false), localDataset(true), metric(&metric), distanceComps(0) { // If there is only one point or zero points in the dataset... uh, we're done. // Technically, if the dataset has zero points, our node is not correct... if (dataset->n_cols <= 1) return; // Kick off the building. Create the indices array and the distances array. arma::Col<size_t> indices = arma::linspace<arma::Col<size_t> >(1, dataset->n_cols - 1, dataset->n_cols - 1); // This is now [1 2 3 4 ... n]. We must be sure that our point does not // occur. if (point != 0) indices[point - 1] = 0; // Put 0 back into the set; remove what was there. arma::vec distances(dataset->n_cols - 1); // Build the initial distances. ComputeDistances(point, indices, distances, dataset->n_cols - 1); // Create the children. size_t farSetSize = 0; size_t usedSetSize = 0; CreateChildren(indices, distances, dataset->n_cols - 1, farSetSize, usedSetSize); // If we ended up creating only one child, remove the implicit node. while (children.size() == 1) { // Prepare to delete the implicit child node. CoverTree* old = children[0]; // Now take its children and set their parent correctly. children.erase(children.begin()); for (size_t i = 0; i < old->NumChildren(); ++i) { children.push_back(&(old->Child(i))); // Set its parent correctly, and rebuild the statistic. old->Child(i).Parent() = this; old->Child(i).Stat() = StatisticType(old->Child(i)); } // Remove all the children so they don't get erased. old->Children().clear(); // Reduce our own scale. scale = old->Scale(); // Now delete it. delete old; } // Use the furthest descendant distance to determine the scale of the root // node. scale = (int) ceil(log(furthestDescendantDistance) / log(base)); // Initialize statistic. stat = StatisticType(*this); Log::Info << distanceComps << " distance computations during tree " << "construction." << std::endl; }