Пример #1
0
TEST(SumNode, GenerateAndSumHaveEqualAmount2) {

    std::function<void(Context&)> start_func =
        [](Context& ctx) {

            // TODO(ms): Replace this with some test-specific rendered file
            auto input = ReadLines(ctx, "inputs/test1")
                         .Map([](const std::string& line) {
                                  return std::stoi(line);
                              });

            auto ones = input.Map([](int in) {
                                      return in;
                                  });

            auto add_function = [](int in1, int in2) {
                                    return in1 + in2;
                                };

            DIA<int> coll = ones.Collapse();

            ASSERT_EQ(136, coll.Sum(add_function));
            ASSERT_EQ(16u, coll.Size());
        };

    api::RunLocalTests(start_func);
}
Пример #2
0
TEST(Graph, WhileLoop) {

    std::function<void(Context&)> start_func =
        [](Context& ctx) {

            auto integers = Generate(
                ctx,
                [](const size_t& index) -> size_t {
                    return index;
                },
                16);

            auto flatmap_duplicate = [](size_t in, auto emit) {
                                         emit(in);
                                         emit(in);
                                     };

            auto map_multiply = [](size_t in) {
                                    return 2 * in;
                                };

            DIA<size_t> squares = integers.Collapse();
            size_t sum = 0;

            // run loop four times, inflating DIA of 16 items -> 256
            while (sum < 64) {
                auto pairs = squares.FlatMap(flatmap_duplicate);
                auto multiplied = pairs.Map(map_multiply);
                squares = multiplied.Cache();
                sum = squares.Size();
            }

            std::vector<size_t> out_vec = squares.AllGather();

            ASSERT_EQ(64u, out_vec.size());
            ASSERT_EQ(64u, squares.Size());

            ctx.stats_graph().BuildLayout("loop.out");
        };

    api::RunLocalTests(start_func);
}
Пример #3
0
ValueType Select(const DIA<ValueType, InStack>& data, size_t rank,
                 const Compare& compare = Compare()) {
    api::Context& ctx = data.context();
    const size_t size = data.Size();

    assert(0 <= rank && rank < size);

    if (size <= base_case_size) {
        // base case, gather all data at worker with rank 0
        ValueType result = ValueType();
        auto elements = data.Gather();

        if (ctx.my_rank() == 0) {
            assert(rank < elements.size());
            std::nth_element(elements.begin(), elements.begin() + rank,
                             elements.end(), compare);

            result = elements[rank];

            LOG << "base case: " << size << " elements remaining, result is "
                << result;
        }

        result = ctx.net.Broadcast(result);
        return result;
    }

    ValueType left_pivot, right_pivot;
    std::tie(left_pivot, right_pivot) = PickPivots(data, size, rank, compare);

    size_t left_size, middle_size, right_size;

    using PartSizes = std::pair<size_t, size_t>;
    std::tie(left_size, middle_size) =
        data.Map(
            [&](const ValueType& elem) -> PartSizes {
                if (compare(elem, left_pivot))
                    return PartSizes { 1, 0 };
                else if (!compare(right_pivot, elem))
                    return PartSizes { 0, 1 };
                else
                    return PartSizes { 0, 0 };
            })
        .Sum(
            [](const PartSizes& a, const PartSizes& b) -> PartSizes {
                return PartSizes { a.first + b.first, a.second + b.second };
            },
            PartSizes { 0, 0 });
    right_size = size - left_size - middle_size;

    LOGM << "left_size = " << left_size << ", middle_size = " << middle_size
         << ", right_size = " << right_size << ", rank = " << rank;

    if (rank == left_size) {
        // all the elements strictly smaller than the left pivot are on the left
        // side -> left_size-th element is the left pivot
        LOGM << "result is left pivot: " << left_pivot;
        return left_pivot;
    }
    else if (rank == left_size + middle_size - 1) {
        // only the elements strictly greater than the right pivot are on the
        // right side, so the result is the right pivot in this case
        LOGM << "result is right pivot: " << right_pivot;
        return right_pivot;
    }
    else if (rank < left_size) {
        // recurse on the left partition
        LOGM << "Recursing left, " << left_size
             << " elements remaining (rank = " << rank << ")\n";

        auto left = data.Filter(
            [&](const ValueType& elem) -> bool {
                return compare(elem, left_pivot);
            }).Collapse();
        assert(left.Size() == left_size);

        return Select(left, rank, compare);
    }
    else if (left_size + middle_size <= rank) {
        // recurse on the right partition
        LOGM << "Recursing right, " << right_size
             << " elements remaining (rank = " << rank - left_size - middle_size
             << ")\n";

        auto right = data.Filter(
            [&](const ValueType& elem) -> bool {
                return compare(right_pivot, elem);
            }).Collapse();
        assert(right.Size() == right_size);

        return Select(right, rank - left_size - middle_size, compare);
    }
    else {
        // recurse on the middle partition
        LOGM << "Recursing middle, " << middle_size
             << " elements remaining (rank = " << rank - left_size << ")\n";

        auto middle = data.Filter(
            [&](const ValueType& elem) -> bool {
                return !compare(elem, left_pivot) &&
                !compare(right_pivot, elem);
            }).Collapse();
        assert(middle.Size() == middle_size);

        return Select(middle, rank - left_size, compare);
    }
}