Пример #1
0
 DNA* initSultan5(int& m, int& n)
 {
   SmartArrayPtr<double> *diag, *sdiag, *kap;
   m = 5;
   n = 6;
  
   DNA* dna = new DNA(n, n - m);
   diag = dna->getDiag();
   sdiag = dna->getSDiag();
   kap = dna->getKap();

   diag->alloc(m);
   sdiag->alloc(m);
   kap->alloc(m);
   
   for(int i = 0; i < 5; i ++) {
     (*diag)[i] = 0.;
     (*sdiag)[i] = 1.;
   }
   (*kap)[0] = 24.;
   (*kap)[1] = 27.;
   (*kap)[2] = 33.;      
   (*kap)[3] = 37.;      
   (*kap)[4] = 24.;

   return dna;
 }
// Making the next generation
void Population::reproduction()
{
    // Refill the population with children from the mating pool
    for( int i = 0; i < mPopulation.size(); i++ )
	{
		// Sping the wheel of fortune to pick two parents
		int m = randInt( mMatingPool.size() );
		int d = randInt( mMatingPool.size() );
		// Pick two parents
		RocketRef mom = mMatingPool[m];
		RocketRef dad = mMatingPool[d];
		// Get their genes
		DNA *momgenes = mom->getDNA();
		DNA *dadgenes = dad->getDNA();
		// Mate their genes
		DNA *child = momgenes->crossover( dadgenes );
		// Mutate their genes
		child->mutate( mMutationRate );
		// Fill the new population with the new child
		Vec2f location = Vec2f( getWindowWidth() / 2.0, getWindowHeight() + 20.0 );
		
		mPopulation[i].reset(); // get rid of the old rocket
		mPopulation[i] = std::make_shared<Rocket>( location, child, mTarget );
    }
    mGenerations++;
}
Пример #3
0
//--------------------------------------------------------------
void ofApp::draw()
{
	if (!foundSolution)
	{
		for (int i = 0; i < ArrayCount(population); i++)
		{
			population[i].Fitness();
		}

		vector<DNA> matingPool = vector<DNA>();
		for (int i = 0; i < ArrayCount(population); i++)
		{
			int n = int(population[i].fitness * ArrayCount(population));
			for (int k = 0; k < n; k++)
			{
				matingPool.push_back(population[i]);
			}
		}

		for (int i = 0; i < ArrayCount(population); i++)
		{
			int a = int(ofRandom(0, matingPool.size()));
			int b = int(ofRandom(0, matingPool.size()));

			DNA parentA = matingPool[a];
			DNA parentB = matingPool[b];

			DNA child = parentA.crossover(parentB);
			child.mutate();

			population[i] = child;
		}
	}

	ofClear(ofColor::white);

	ofSetColor(ofColor::black);
	for (int i = 0; i < ArrayCount(population); i++)
	{
		//string str = population[i].genes;
		population[i].genes[ArrayCount(population[i].genes)] = '\0';

		if (population[i].genes == target)
		{
			foundSolution = true;
			ofNoFill();
			ofSetLineWidth(6);
			ofSetCurveResolution(200);
			ofCircle(ofPoint((int(i / POPULATION_PER_COLUMN) * Y_SPACING) + 100, 
								((i % POPULATION_PER_COLUMN) * X_SPACING) + BUFFER_SPACING), 120);
		}
		

		myFont.drawString(population[i].genes, 
							(int(i / POPULATION_PER_COLUMN) * Y_SPACING) + BUFFER_SPACING, 
							((i % POPULATION_PER_COLUMN) * X_SPACING) + BUFFER_SPACING);

	}

}
Пример #4
0
RNA DnaConfig::add_DNA_CrossTalk(DNA& dnaTotal)
{
	DNA dnaCrossTalk;
	RNA rnaCrossTalk;

    //Cross Talk
    if (m_chkCrossTalk)
    {
        dnaCrossTalk.AddCell(CrsTlk , Pn4, m_CTFE);
        dnaCrossTalk.AddCell(CrsTlkD, Pn4, m_CTFE);
        dnaCrossTalk.AddCell(CrsTlkW, Pn4, m_CTFE);
    }

	if (dnaCrossTalk.Size()) 
	{
		Ts->Trans(dnaCrossTalk, rnaCrossTalk);
		rnaCrossTalk.SortQuackMsr();
	}

	showRNA(rnaCrossTalk);
	dnaTotal += dnaCrossTalk;

	return rnaCrossTalk;
	
}
Пример #5
0
GenePool::GenePool(char* filename, int nseed, int nrlock, int simtype, int runs, int smult, int lmult)
{
   seed = nseed;
   reactionlock = nrlock;
   //for (int i = 0;i < 30;i++)
   //{
      DNA a;a.load(filename);
      dnavect.push_back(a);
      
      
      int addfit = 0;
      for (int aja = 0;aja < runs;aja++)
      {
         AIPlayer ai;
         KeyState ks;
      //Random ran;
         GameSpace gs(1, 0, 800, 0, 600, (seed-1) + aja, true, "test.lua", "shinku.lua");
         while (gs.updateGameState(ks) == 1)
	      {
            ks = ai.update(&gs, gs.thePlayer, dnavect[0], ks);
         }
      addfit += gs.thePlayer->getScore()*smult;
      addfit += gs.thePlayer->getLives()*lmult;
      }
      fitness.push_back(addfit / runs);
   
   return;
}
Пример #6
0
DNA Chromosome::getDNAObj() const
{
	DNA ret;
	list<DNA>::const_iterator iter = strands.cbegin();
	while (iter != strands.cend())
	{
		ret.setDNAInParts(iter->getDNA());
		iter++;
	}
	return ret;
}
DNA DNA::crossover(DNA partner){
    DNA child = DNA();
    // Picking a random “midpoint” in the genes array
    int midpoint = ofRandom(genes.size());
    for (int i = 0; i < genes.size(); i++) {
      // Before midpoint copy genes from one parent, after midpoint copy genes from the other parent
      if (i>midpoint) child.addGene(genes[i]);
      else child.addGene(partner.genes[i]);
    }
    //Return the new child DNA
    return child;
}
Пример #8
0
void DNA::DelCell(const DNA& compData)
{
    if (compData.Size())//裡面這些不要修改,影響再次量測的資料擺放
    {
        std::vector<Nucleotide>::const_iterator dnaItor = 0, compItor;
        std::vector<Nucleotide>::iterator rmBeginItor(End());

        for (compItor = compData.Begin(); compItor != compData.End(); ++compItor)
                rmBeginItor = std::remove(Begin(), rmBeginItor, *compItor);
        
        nChain.erase(rmBeginItor, End());
    }
}
Пример #9
0
void Population::reproduce() {
  for (int i = 0; i < popSize; i++) {
    int a = ofRandom(matingPool.size());
    int b = ofRandom(matingPool.size());
    DNA partnerA = matingPool[a];
    DNA partnerB = matingPool[b];
    //Step 3a: Crossover
    DNA child = partnerA.crossover(partnerB);
    //Step 3b: Mutation
    child.mutate(mutationRate);
    //Note that we are overwriting the population with the new children. When draw() loops, we will perform all the same steps with the new population of children.
    population[i] = child;
  }
}
Пример #10
0
//-----------------------------------------------------------------
// Crossover
DNA DNA::crossover(DNA partner) {
    // A new child
    DNA child;
    child.setup(geneSize);
    //int midpoint = int(ofRandom(genes.size())); // Pick a midpoint (NO RESPECT FOR GENE INTEGRITY)
    int midpoint = int(ofRandom(geneSize)); // Pick a midpoint (RESPECTING GENE INTEGRITY)

    // Half from one, half from the other
    for (int i = 0; i < genes.size(); i++) {
        if (i > midpoint) child.genes[i] = genes[i];
        else              child.genes[i] = partner.genes[i];
    }
    return child;

}
Пример #11
0
// Output the DNA
void Parser::print(std::ostream& iStream, const DNA& iDNA) {
    for (unsigned int i = 0; i < iDNA.genes(); i++) {
        // Extract the gene
        unsigned char* tGene;
        unsigned int tSize;
        iDNA.extract_gene(i, tGene, tSize);

        // Print the block
        std::cout << "* Human-readable version of block " << i << std::endl;
        print_block(iStream, tGene, tSize);

        // Free the block
        free(tGene);
    }
}
Пример #12
0
af::array Synthesizer::Impl::decodeAsArray(const DNA& dna)
{
    af::array result = af::constant(0, resultSize(), f32);
    unsigned dnaBeginIndex = 0;
    unsigned resultBeginIndex = 0;
    for (unsigned ruleIndex = 0; ruleIndex < rules.size(); ruleIndex++) {
        auto rule = rules[ruleIndex];

        unsigned ruleDnaSize = rule->dnaSize();
        unsigned ruleResultSize = rule->resultSize();
        unsigned dnaEndIndex = dnaBeginIndex + ruleDnaSize - 1;
        unsigned resultEndIndex = resultBeginIndex + ruleResultSize - 1;

        rule->decode(make_tuple(
            af::array(dna.array()(af::seq(dnaBeginIndex, dnaEndIndex))),
            std::ref(result),
            af::seq(resultBeginIndex, resultEndIndex),
            std::ref(states[ruleIndex])));

        dnaBeginIndex += ruleDnaSize;
        resultBeginIndex += ruleResultSize;
    }

    result.eval();
    return result;
}
Пример #13
0
PermutationTest& PermutationTest::permute (const char* filename, const int niter, Random &ran) {
	if (dna == 0) {
		dna = new DNA;
	}
	dna->readFASTA (filename);
	return permute (dna, niter, ran);
}
Пример #14
0
// Evaluate DNA
void Parser::evaluate(const DNA& iDNA) {
    // Reset the quotum
    mInstructionCounter = 0;

    // Evaluate all blocks
    for (unsigned int i = 0; i < iDNA.genes(); i++) {
        // Extract the blocks
        unsigned char* tGene;
        unsigned int tSize;
        iDNA.extract_gene(i, tGene, tSize);

        // Evaluate the block
        evaluate_block(tGene, tSize);

        // Free the block
        free(tGene);
    }
}
int main()
{
#ifndef ONLINE_JUDGE
	freopen("in_2945.txt","r",stdin);
#endif
	four[0]=1;
	for(int i=1;i<=20;++i)
	{
		four[i]=four[i-1]*4;
	}
	while(scanf("%d%d\n",&n,&m)&&n)
	{
		dna.clear();
		memset(cnt,0,sizeof(cnt));
		for(int i=0;i<n;++i)
		{
			//scanf("%s\n",&buf);
			gets(buf);
			long long tmp=0;
			for(int j=0;j<m;++j)
			{
				tmp+=four[j]*GetW(buf[j]);
			}
			mit=dna.find(tmp);
			if(mit==dna.end())
			{
				dna[tmp]=1;
			}
			else
			{
				dna[tmp]++;
			}
		}
		for(mit=dna.begin();mit!=dna.end();++mit)
		{
			cnt[mit->second]++;
		}
		for(int i=1;i<=n;++i)
		{
			printf("%d\n",cnt[i]);
		}
	}
	return 0;
}
Пример #16
0
RNA DnaConfig::add_DNA_Gamma(DNA& dnaTotal)
{
	DNA dnaGamma;
	RNA rnaGamma;
	//Gamma
    if (m_chkWGamma || m_chkDGamma)        
                        dnaGamma.AddCell(White, PnGamma, m_WGammaBegin, m_WGamma_End, m_WGamma_Avg );  
    if (m_chkRGamma)    dnaGamma.AddCell(Red  , PnGamma, m_RGammaBegin, m_RGamma_End, m_RGamma_Avg );
    if (m_chkGGamma)    dnaGamma.AddCell(Green, PnGamma, m_GGammaBegin, m_GGamma_End, m_GGamma_Avg );
    if (m_chkBGamma)    dnaGamma.AddCell(Blue , PnGamma, m_BGammaBegin, m_BGamma_End, m_BGamma_Avg );

	if (dnaGamma.Size()) 
	{
		Ts->Trans(dnaGamma, rnaGamma);
		rnaGamma.SortOrigMsr();
	}
	dnaTotal += dnaGamma;

	return rnaGamma;
}
void Population::reproduction() {

  for (int i = 0; i < (int)elements.size(); i++) {
    elements.at(i)->computeFitness(target);
  }

  vector<DNA *> pool = matingPool();


  for (int i = 0; i < (int)elements.size(); i++) {
    DNA * partnerA = pool.at(randInt(pool.size()));
    DNA * partnerB = pool.at(randInt(pool.size()));
    
    DNA * child = partnerA->crossover(partnerB);
    child->mutate(mutationRate);

    elements.at(i) = child;
  }

}
tsp_individual_multi::DNA tsp_individual_multi::translateToDnaPhenotypicOrdinal(const DNA trait){
    DNA ordinal;
    DNA tmp;
    
    for(int i=0;i<trait.size();i++){
        tmp.push_back(i);
    }
    
    ordinal.resize(trait.size());
    
    for(int i=0;i<trait.size();i++){
        ordinal[i] = tmp[trait[i]];
        tmp.erase(tmp.begin() + trait[i]);
    }
    
    return ordinal;
}
Пример #19
0
vector<DNA<false>> FrequentWords(const DNA<IsCyclic>& dnaString, int k) {
  //Initialize dictionary
  unordered_map<DNA<false>, int> counts{ };
  size_t n{ dnaString.size() };

  //Fill dictionary and count kmer frequencies
  int maxCount{ 1 };
  for (size_t i = 0; i < n - k + 1; i++) {
    DNA<false> part{ dnaString.slice(i, k) };
    auto it = counts.find(part);
    if (it == end(counts)) { 
      counts[part] = 1; 
    } else { 
      it->second++; 
      if (maxCount < it->second) maxCount = it->second;
    };
  };

  //Extract most frequent words
  vector<DNA<false>> most_frequent_words{ };
  for (auto& p : counts) if (p.second == maxCount) most_frequent_words.push_back(p.first);

  return most_frequent_words;
};
Пример #20
0
DNA* initSultan3(int& m, int& n)
{
  SmartArrayPtr<double> *diag, *sdiag, *kap;
  m = 3;
  n = 4;
  
  DNA* dna = new DNA(n, n - m);
  diag = dna->getDiag();
  sdiag = dna->getSDiag();
  kap = dna->getKap();

  diag->alloc(3);
  sdiag->alloc(3);
  kap->alloc(3);
  (*diag)[0] = 0.;
  (*diag)[1] = 0.;
  (*diag)[2] = 0.;
  (*sdiag)[0] = 1.;
  (*sdiag)[1] = 1.;
  (*kap)[0] = 6.;
  (*kap)[1] = 5.1;
  (*kap)[2] = 3.9;      
  return dna;
 }
tsp_individual_multi::DNA tsp_individual_multi::translateToDnaPhenotypicTrait(const DNA ordinal){
    DNA trait;
    DNA tmp;
    
    for(int i=0;i<ordinal.size();i++){
        tmp.push_back(i);
    }
    
    for(int i=0;i<ordinal.size();i++){
        for(int j=0;j<tmp.size();j++){
            if(ordinal[i] == tmp[j]){
                trait.push_back(j);
                tmp.erase(tmp.begin() + j);
                break;
            }
        }
    }
    
    
    return trait;
}
Пример #22
0
PermutationTest& PermutationTest::permute (DNA *dna_in, const int niter, Random &ran) {
	dna = dna_in;
	int i, j, k, pos;

	/* Find out which sites are bi-allelic segregating */
	/* (segregating for short) */
	char state1, state2;
	vector<bool> segregating (dna->lseq);
	for (i = 0; i < dna->lseq; i++) {
		segregating[i] = false;
		state1 = (*dna) [0][i];
		for (j = 1; j < dna->nseq; j++)
			if ( (*dna) [j][i] != state1) {
				state2 = (*dna) [j][i];
				segregating[i] = true;
				j++;
				for (; j < dna->nseq; j++)
					if ( (*dna) [j][i] != state1 && (*dna) [j][i] != state2) {
						/* Tri-allelic segregating */
						segregating[i] = false;
						break;
					}
				break;
			}
	}

	/* Count number of segregating sites */
	int nseg = 0;
	for (i = 0; i < dna->lseq; i++)
		if (segregating[i]) {
			nseg++;
		}
	if (nseg == 0) {
		error ("No segregating sites found");
	}

	/* Copy segregating sites to a new DNA object */
	sdna.resize (dna->nseq, nseg);
	vector<double> d (nseg, 0.0);
	for (i = 0, pos = 0; i < dna->lseq; i++)
		if (segregating[i]) {
			for (j = 0; j < dna->nseq; j++) {
				sdna[j][pos] = (*dna) [j][i];
			}
			d[pos] = (double) i;
			++pos;
		}

	/* Calculate frequency statistics */
	vector<double> F (sdna.lseq, 1.0);								/* F is the marginal frequency of the dna[0][i] (A) allele at site i */
	vector<double> four (4, 0.0);									/* G[i][j] is the frequency of AB (G[i][j][0]), Ab (1), aB (2), ab (3) */
	LowerTriangularMatrix< vector<double> > G (sdna.lseq, four);
	for (i = 0; i < sdna.lseq; i++) {
		state1 = sdna[0][i];
		for (j = 1; j < sdna.nseq; j++)
			if (sdna[j][i] == state1) {
				F[i]++;
			}
		F[i] /= (double) sdna.nseq;
	}
	for (i = 0; i < sdna.lseq; i++)
		for (j = 0; j < i; j++) {
			state1 = sdna[0][i];
			state2 = sdna[0][j];
			for (k = 0; k < sdna.nseq; k++) {
				if (sdna[k][i] == state1 && sdna[k][j] == state2) {
					++G[i][j][0];
				} else if (sdna[k][i] == state1 && sdna[k][j] != state2) {
					++G[i][j][1];
				} else if (sdna[k][i] != state1 && sdna[k][j] == state2) {
					++G[i][j][2];
				} else if (sdna[k][i] != state1 && sdna[k][j] != state2) {
					++G[i][j][3];
				} else {
					warning ("Unexpected choice");
				}
			}
			for (k = 0; k < 4; k++) {
				G[i][j][k] /= (double) sdna.nseq;
			}
		}

	/* Calculate LD statistics for pairs of sites */
	LowerTriangularMatrix<double> A (nseg, 0.0);
	LowerTriangularMatrix<double> B (nseg, 0.0);
	LowerTriangularMatrix<double> C (nseg, 0.0);
	Matrix<double> D (nseg, nseg, 0.0);
	double temp;
//  ofstream out("__out.txt");
//  char tab = '\t';
//  out << "locusA" << tab << "locusB" << tab << "rsq" << tab << "Dprime" << tab << "G4" << "dist" << endl;
	for (i = 0; i < nseg; i++) {
		for (j = 0; j < i; j++) {
			temp = G[i][j][0] - F[i] * F[j];
			A[i][j] = pow (temp, 2.0) / (F[i] * (1. - F[i]) * F[j] * (1. - F[j]) );
			B[i][j] = (temp < 0.0) ? -temp / MIN (F[i] * F[j], (1. - F[i]) * (1. - F[j]) ) : temp / MIN (F[i] * (1. - F[j]), (1. - F[i]) * F[j]);
			C[i][j] = (G[i][j][0] > 0.0 && G[i][j][1] > 0.0 && G[i][j][2] > 0.0 && G[i][j][3] > 0.0) ? 1.0 : 0.0;
			D[i][j] = D[j][i] = d[i] - d[j];
//		  out << i << tab << j << tab << A[i][j] << tab << B[i][j] << tab << C[i][j] << tab << D[i][j] << endl;
		}
	}
//  out.close();

	/* Calculate remaining statistics for correlation coefficients */
	double Abar, Bbar, Cbar, Dbar;
	double Adev, Bdev, Cdev, Ddev;
	Abar = Bbar = Cbar = Dbar = Adev = Bdev = Cdev = Ddev = 0.0;
	double ctr = 0.0;
	for (i = 0; i < nseg; i++)
		for (j = 0; j < i; j++, ctr++) {
			Abar += A[i][j];
			Bbar += B[i][j];
			Cbar += C[i][j];
			Dbar += D[i][j];
		}
	Abar /= ctr;
	Bbar /= ctr;
	Cbar /= ctr;
	Dbar /= ctr;
	for (i = 0; i < nseg; i++)
		for (j = 0; j < i; j++) {
			Adev += pow (A[i][j] - Abar, 2.0);
			Bdev += pow (B[i][j] - Bbar, 2.0);
			Cdev += pow (C[i][j] - Cbar, 2.0);
			Ddev += pow (D[i][j] - Dbar, 2.0);
		}


	/* Perform the permutation tests */
	double a, b, c, pa, pb, pc;
	double PA, PB, PC, dist;

	a = b = c = 0.0;
	for (j = 0; j < nseg; j++)
		for (k = 0; k < j; k++) {
			a += A[j][k] * D[j][k];
			b += B[j][k] * D[j][k];
			c += C[j][k] * D[j][k];
		}
	double Aadd = ctr * Abar * Dbar;
	double Adiv = sqrt (Adev * Ddev);
	double Badd = ctr * Bbar * Dbar;
	double Bdiv = sqrt (Bdev * Ddev);
	double Cadd = ctr * Cbar * Dbar;
	double Cdiv = sqrt (Cdev * Ddev);
	a -= Aadd;
	a /= Adiv;
	b -= Badd;
	b /= Bdiv;
	c -= Cadd;
	c /= Cdiv;

	PA = PB = PC = 0.0;
	vector<int> order (sdna.lseq);
	vector<int> pool (sdna.lseq);
	for (i = 0; i < niter; i++) {
		for (j = 0; j < nseg; j++) {
			pool[j] = j;
		}
		for (j = nseg - 1; j >= 0; j--) {
			pos = ran.discrete (0, j);
			order[j] = pool[pos];
			pool[pos] = pool[j];
		}
		pa = pb = pc = 0.0;
		for (j = 0; j < nseg; j++)
			for (k = 0; k < j; k++) {
				dist = D[order[j]][order[k]];
				pa += A[j][k] * dist;
				pb += B[j][k] * dist;
				pc += C[j][k] * dist;
			}
		pa -= Aadd;
		pa /= Adiv;
		pb -= Badd;
		pb /= Bdiv;
		pc -= Cadd;
		pc /= Cdiv;
		if (pa <= a) {
			++PA;
		}
		if (pb <= b) {
			++PB;
		}
		if (pc >= c) {
			++PC;
		}
	}

	p[0] = (PA + 1.) / (double) (niter + 1);
	v[0] = a;
	p[1] = (PB + 1.) / (double) (niter + 1);
	v[1] = b;
	p[2] = (PC + 1.) / (double) (niter + 1);
	v[2] = c;
	if (coutput) {
		printResults();
	}
	return *this;
}
Пример #23
0
void Chromosome::addDNA(const DNA & dna)
{
	strands.push_back(dna);
	entireDNA += dna.getDNA();
}
Пример #24
0
list<CalculatedOligo> OligoAnalisys::performAnalysis(DNA seq, DNA learningSeq,
		double n, int oligoLength) {

	list<CalculatedOligo> calOlig;
	map<string, kmerFreq> freq;
	map<string, kmerFreq>::iterator it;
	map<string, Prefix> matrix;
	CalculatedOligo olig;
	int S = seq.chain.size();
	int learningSeqSize = 0;
	int T = 0;
	int L = 0;
	int seqTotalsize = 0;

	for (int i = 0; i < learningSeq.chain.size(); ++i) {
		learningSeqSize = learningSeqSize + learningSeq.chain[i].length();
	}

	for (int i = 0; i < S; ++i) {
		L = L + (seq.chain[i].length() - oligoLength + 1);
	}
	T = 2 * L;

	for (int m = 0; m < S; ++m) {
		seq.addSeq(seq.chain[m].reverse_compliment());
	}

	for (int k = 0; k < (2 * S); ++k) {
		seqTotalsize = seqTotalsize + seq.chain[k].length();
	}

	cout << " L " << L << endl;
	cout << " T " << T << endl;
	cout << " learningSeqSize " << learningSeqSize << endl;
	cout << " seqTotalsize " << seqTotalsize << endl;

	freq = computeTotalFrequency(learningSeq, 3, learningSeqSize);
	matrix = buildTransitionTable(freq);
	freq = computeTotalFrequency(seq, 6, seqTotalsize);

	for (it = freq.begin(); it != freq.end(); ++it) {
		olig.setOlig(it->second.getOlig());
		olig.setFreq(it->second.getFreq());
		olig.setOccurrences(it->second.getOccurrences());
		olig.setExpFreq(scoreSeqMarkov(it->second.getOlig(), 2, matrix));
		olig.setExpOcc(olig.getExpFreq() * T);
		olig.setOccP(
				binomialPValue(T, olig.getExpFreq(),
						it->second.getOccurrences()));
		olig.setOccE(
				probOccBGreater(olig.getExpFreq(), T,
						it->second.getOccurrences()));
		olig.setOccSig(sigValue(olig.getOccE(), oligoLength));
		calOlig.push_back(olig);
		/*
		 cout << "Seq " << olig.getOlig().seq
		 << " freq " << olig.getFreq()
		 << "  exp_freq " << olig.getExpFreq() << " occ "
		 << olig.getOccurrences() << " exp_occ " << olig.getExpOcc()
		 << " Binomial " << olig.getOccP() << " Occ_E " << olig.getOccE()
		 << " sig " << olig.getOccSig() << endl;
		 */
	}
	calOlig.sort(compareOccSig);
	return calOlig;
}
Пример #25
0
Chromosome::Chromosome(DNA dna)
{
	entireDNA = dna.getDNA();
	strands.push_back(dna);
}
Пример #26
0
RNA DnaConfig::add_DNA_WRGBD(DNA& dnaTotal)
{
 	DNA dnaSortStable;
	RNA rnaSortStable;

    //修改的話,要同步修改
    //中心點
    if (m_chkWP1)  dnaSortStable.AddCell(White, Pn1);
    if (m_chkRP1)  dnaSortStable.AddCell(Red  , Pn1);
    if (m_chkGP1)  dnaSortStable.AddCell(Green, Pn1);
    if (m_chkBP1)  dnaSortStable.AddCell(Blue , Pn1);
    if (m_chkDP1)  dnaSortStable.AddCell(Dark , Pn1);
    
    //Nits
    if (m_chkNits)  dnaSortStable.AddCell(Nits, Pn9, m_NitsLv, m_NitsDirect);
    
    //5點
    if (m_chkWP5)    dnaSortStable.AddCell(White, Pn5, m_W5FE);
//     if (m_chkRP5)    dnaSortStable.AddCell(Red  , Pn5, W5FE);
//     if (m_chkGP5)    dnaSortStable.AddCell(Green, Pn5, W5FE);
//     if (m_chkBP5)    dnaSortStable.AddCell(Blue , Pn5, W5FE);
//     if (m_chkDP5)    dnaSortStable.AddCell(Dark , Pn5, W5FE);
    
    //9點
    if (m_chkWP9)    dnaSortStable.AddCell(White, Pn9, m_W9FE, m_W9EdgeType);
//     if (m_chkRP9)    dnaSortStable.AddCell(Red  , Pn9, W9FE, PA_FEover);
//     if (m_chkGP9)    dnaSortStable.AddCell(Green, Pn9, W9FE, PA_FEover);
//     if (m_chkBP9)    dnaSortStable.AddCell(Blue , Pn9, W9FE, PA_FEover);
    if (m_chkDP9)    dnaSortStable.AddCell(Dark , Pn9, m_D9FE, m_D9EdgeType);
    
    //21點
//     if (m_chkWP21)    dnaSortStable.AddCell(White, Pn21, D21FE);
//     if (m_chkRP21)    dnaSortStable.AddCell(Red  , Pn21, D21FE);
//     if (m_chkGP21)    dnaSortStable.AddCell(Green, Pn21, D21FE);
//     if (m_chkBP21)    dnaSortStable.AddCell(Blue , Pn21, D21FE);
    if (m_chkDP21)    dnaSortStable.AddCell(Dark , Pn21, m_D21FE);
    
    //13點
//     if (m_chkWP13)    dnaSortStable.AddCell(White, Pn13, D13FE);
//     if (m_chkRP13)    dnaSortStable.AddCell(Red  , Pn13, D13FE);
//     if (m_chkGP13)    dnaSortStable.AddCell(Green, Pn13, D13FE);
//     if (m_chkBP13)    dnaSortStable.AddCell(Blue , Pn13, D13FE);
    if (m_chkDP13)    dnaSortStable.AddCell(Dark , Pn13, m_D13FE);
    
    //25點
//     if (m_chkWP25)    dnaSortStable.AddCell(White, Pn25, D25FE, D25RectSide);
//     if (m_chkRP25)    dnaSortStable.AddCell(Red  , Pn25, D25FE, D25RectSide);
//     if (m_chkGP25)    dnaSortStable.AddCell(Green, Pn25, D25FE, D25RectSide);
//     if (m_chkBP25)    dnaSortStable.AddCell(Blue , Pn25, D25FE, D25RectSide);
    if (m_chkDP25)    dnaSortStable.AddCell(Dark , Pn25, m_D25FE, m_D25RectSide);
    
    //49點
    if (m_chkWP49)    dnaSortStable.AddCell(White, Pn49);
//     if (m_chkRP49)    dnaSortStable.AddCell(Red  , Pn49);
//     if (m_chkGP49)    dnaSortStable.AddCell(Green, Pn49);
//     if (m_chkBP49)    dnaSortStable.AddCell(Blue , Pn49);
//     if (m_chkDP49)    dnaSortStable.AddCell(Dark , Pn49);

	if (dnaSortStable.Size())
	{
		Ts->Trans(dnaSortStable, rnaSortStable);

		//排序
		if (m_msrQuick)  rnaSortStable.SortQuackMsr();
		else             rnaSortStable.SortOrigMsr();
	}

	showRNA(rnaSortStable);
	dnaTotal += dnaSortStable;
	return rnaSortStable;
}
Пример #27
0
main()
{
	//STEP 0
	//make my boxes
	//for i in 50, new Box()
	for (int i=0; i<BOXNUM; i++)
	{
		box[i]=new Box();
		cout<<"Box "<<i<<": w="<<box[i]->weight<<", v="<<box[i]->value<<endl;
	}

	//verify by print all the boxes and weights

	//while our population is less than the initial population 
	//	dna[i]=new DNA()
	// 	only add it if the weight below 1000

	while(population < INITIAL_POPULATION)
	{
		DNA* d = new DNA();
		if(d->getWeight()<=1000)
		{
			dna[population]=d;
			population++;
		}
	}



	//for loop # of generations
	//	figure out who the best is and print out its dna/weight/value
	//	kill

		//bubble sort by value

		for(int i=0; i<population; i++)
		{
			for (int j=0; j<population-1; j++)
			{
				if(dna[j+1]->getValue() > dna[j]->getValue())
				{
					DNA* temp = dna[j+1];
					dna[j+1]=dna[j];
					dna[j]=temp;
				}
			}
		}
		population=SURVIVORS;
		//set population = SURVIVORS
	cout << "DNA 0 has "<< dna[0]->getWeight() << " "<<dna[0]->getValue()<<endl;
	cout << "DNA 1 has "<< dna[1]->getWeight() << " "<<dna[1]->getValue()<<endl;

	//	breed
	int breedingpopulation=population; //go through every possible pair
	for(int i=0; i<breedingpopulation; i++)
	{
		for(int mom=0; mom<breedingpopualtion; mom++)
		{
			if(mom==dad) //can't breed with self
				continue;
	





			DNA *baby = new DNA(); //copy over from dad

			for(int k=0; k<crossoverpoint; k++) //copy over from mom
			{
				baby->boxes[k]=dna[dad]->boxes[k];
			}

	
			for(int k=crossoverpoint; k>BOXDNA; k++) //keep the baby
			{
				baby->boxes[k]=dna[mom]->boxes[k];
			}

			if (baby->getweight()>1000) //1000 garbage collect the baby
				continue;

			dna[population++]=baby;

			cout << "daddy is " << dna[dad]->getValue() << ", mommy is " << dna[mom]->getValue << "baby is " << dna[population] << endl;
		}
	}
	
	//	mutate
	int cloningpopulation = population;
	for(int i=0; i<cloningpopulation; i++)
	{
		if(rand()%100 < DOMUTATERATE)
		{
			DNA* mutant = new DNA();
			for(int j=0; j<BOXNUM; j++)
			{
				mutant->boxes[j] = dna[i]->boxes[j]
			}
			cout << "Making a clone: parent: " << dna[i]->getValue() << " spawn: " >> mutant->getValue() << endl;
			
			for(int j=0; j<BOXNUM; j++)
			{
				if (rand()%100 < MUTATIONRATE)
				{
					mutant->boxes[j] = !mutant->boxes[j];
				{
			}

			cout << "spawn: " << mutant->getValue() << endl;
			if(mutant->getWeight()<=1000)
				dna[population++]=mutant;

		}
	}


























}
Пример #28
0
//void GenePool::updatePool(double crossover, double mutationchance, double severity, int tourneysize, int gen)
void GenePool::doPool(int maxsize, int deltype, int tourneysize, double crossover, double mutationchance, double severity, int numgens, double mutdev, double jostlechance, int simtype, int runs, int smult, int lmult)
{
   int top = 1;
   DNA thedna; //set by mutate/breed
   
   for (int fill = 1;fill < maxsize;fill++)
   {
      dnavect.push_back(thedna);
      fitness.push_back(-1);
   }
   
   
   //printf("fitness[%d] = %d ; cycle = %d\n", num, fitness[num], gs.cycle);
   //if (fitness[num] < 0) {dnavect[num].save("bad.dna");}
   
   //delete if needed
   
   
   int tourney[tourneysize];
   Random ran;
   
   
   for (int vvi = 0;vvi < numgens;vvi++)
   {
   
   //int selected[5]; //the index of tourney selected dudes
   //printf("ms1\n");
   int sa = 0;int sb = 0; //the two selected to mate 

   //pick best 'tourneysize' from the tourney
      //printf("ms2\n");
         //select sample for tourney
      for (int ii = 0;ii < tourneysize; ii++)
      {
         tourney[ii] = ran.nextInt(top);
      }
      int highestfit = -1;int highestfitindex = 0;
      //printf("ms3\n");
      for (int b = 0;b < tourneysize;b++)
      {
         if (fitness[tourney[b]] > highestfit) {highestfit = fitness[tourney[b]];highestfitindex = tourney[b];}
      }
      sa = highestfitindex;
      //printf("ms4\n");
      for (int ii = 0;ii < tourneysize; ii++)
      {
         tourney[ii] = ran.nextInt(top);
      }
      highestfit = -1;highestfitindex = 0;
      //printf("ms5\n");
      for (int b = 0;b < tourneysize;b++)
      {
         if (fitness[tourney[b]] > highestfit) {highestfit = fitness[tourney[b]];highestfitindex = tourney[b];}
      }
      sb = highestfitindex;

      //printf("ms6\n");
   //breed and mutate x1
      int inf1 = vvi;int inf2 = sa;int inf3 = fitness[sa];int inf4 = sb;int inf5 = fitness[sb];
      thedna = this->dnavect[sa].mate(dnavect[sb], crossover, reactionlock);
      //printf("msvv\n");
      double fmut = ran.nextGaussian()*mutdev+mutationchance;
      thedna.mutate(fmut, severity, reactionlock, jostlechance);
      //printf("ms7\n");
      int putwhere = 0;
      if (top == maxsize)
      {
         if (deltype == 0)
         { 
            int lowest = -1;
            int lowestindex = 0;
            for(int i = 0;i < top;i++)
            {
               if ((fitness[i] < lowest) || lowest == -1) {lowest = fitness[i]; lowestindex = i;}
            }
         
         //printf("ms8\n");
         putwhere = lowestindex;
         dnavect[putwhere] = thedna;
         }
         
         if (deltype == 1) //random del
         {
            putwhere = ran.nextInt(top);
            dnavect[putwhere] = thedna;
         }
         
         if (deltype == 2)
         {
            for (int ii = 0;ii < tourneysize; ii++)
            {
               tourney[ii] = ran.nextInt(top);
            }
            int lowfit = -1;int lowfitindex = 0;

            for (int b = 0;b < tourneysize;b++)
            {
               if (fitness[tourney[b]] < lowfit || lowfit == -1) {lowfit = fitness[tourney[b]];lowfitindex = tourney[b];}
            }
            
            putwhere = lowfitindex;
            dnavect[putwhere] = thedna;
         }
            
      }
      else
      {
         putwhere = top;top++;
         dnavect[putwhere] = thedna;
         //dnavect.push_back(thedna);
      }

      //printf("ms9\n");
      
      int inf6 = putwhere;int inf7=fitness[putwhere];
      this->simulate(putwhere, simtype, runs, smult, lmult);
      printf("Creature: %d\n", inf1);
      printf("mate1: %d, mate1fit: %d,  mate2: %d,  mate2fit: %d\n",inf2, inf3, inf4, inf5);
      printf("Final Mutation Chance: %lf\n", fmut);
      printf("Fitness of this creature: %d\n", fitness[putwhere]);
      printf("Overwrite Number: %d,  Overwrite Fitness: %d\n", inf6, inf7);
      printf("POOL INFO: Best: %d, Worst: %d, Mean: %g, StdDev: %g\n\n\n", this->bestFitness(top), this->worstFitness(top), this->meanFitness(top), this->standardDeviation(top));

      //do milestone save here
      
}


}
Пример #29
0
int main(int argc, char **argv)
{
    if (argc <= 1)
    {
        printf("Usage: %s infile\n", argv[0]);
        return 1;
    }

    FILE *fp = fopen(argv[1], "rb");
    if (!fp)
    {
        printf("File loading failed %s\n", argv[1]);
        return 1;
    }

    fseek(fp, 0L, SEEK_END);
    int len = ftell(fp);
    fseek(fp, 0L, SEEK_SET);


    char *buf = new char[len+1];
    fread(buf, len, 1, fp);
    fclose(fp);

    bool blender = !strncmp("BLENDER", buf, 6);
    bool bullet  = !strncmp("BULLET", buf, 5);

    if (!blender && !bullet)
    {
        printf("Invalid header, compressed file ?\n");
        delete []buf;
        return 1;
    }

    char *ver = buf+9;
    int version = atoi(ver);

    bool is64Bit = false;
    if (buf[7]=='-')
        is64Bit = true;



    int dnastart = -1;

    char *tbuf = buf;
    for (int i=0; i<len; ++i)
    {
        if (!strncmp("SDNA", tbuf, 4))
        {
            dnastart = i;
            break;
        }

        ++tbuf;
    }

    if (dnastart != -1)
    {
        DNA *dna = new DNA;
        dna->parse(buf + dnastart);


        char specname[12], fname[12];
        sprintf(specname,   "%s", (bullet ? "Bullet" : "Blender"));
        sprintf(fname,      "%s.h", (bullet ? "Bullet" : "Blender"));

        FILE *bfp= fopen(fname, "wb");
        if (bfp)
        {
            printf("Writing %s header from file version %i...\n", specname, version);


            fprintf(bfp, "#ifndef _%s_h_\n", specname);
            fprintf(bfp, "#define _%s_h_\n", specname);

            fprintf(bfp, "// Generated from a %s(%i) file.\n\n", specname, version);


            if (blender)
            {
                fprintf(bfp, "#ifdef near\n");
                fprintf(bfp, "#undef near\n");
                fprintf(bfp, "#endif\n");
                fprintf(bfp, "#ifdef far\n");
                fprintf(bfp, "#undef far\n");
                fprintf(bfp, "#endif\n");
				fprintf(bfp, "#ifdef rad2\n");
				fprintf(bfp, "#undef rad2\n");
				fprintf(bfp, "#endif\n");
            }

            fprintf(bfp, "\n\n");

            fprintf(bfp, "namespace %s {\n", specname);

#if ADD_DOXYGEN_COMMENTS
			fprintf(bfp, "/** \\addtogroup %s\n"
				"*  @{\n"
				"*/\n\n",
				specname
			);
#endif
            dumpStructs(bfp, dna);

#if ADD_DOXYGEN_COMMENTS
			fprintf(bfp, "/** @}*/\n");            
#endif

            fprintf(bfp, "}\n");

			fprintf(bfp, "#endif//_%s_h_\n", specname);

            fclose(bfp);
        }


#if WRITE_DNA_FILE
        char name[32];
        sprintf(name, "dna_%i_%s.cpp", version, (is64Bit ? "64" : "32"));

        bfp= fopen(name, "wb");
        if (bfp)
        {
            printf("Writing %s bit DNA...\n", (is64Bit ? "64" : "32"));

            fprintf(bfp, "unsigned char DNAstr%s[]={\n    ", (is64Bit ? "64" : ""));

            char *dnaStr = buf + dnastart;
            for (int d=0; d<len-dnastart; ++d)
            {

                unsigned char uch = (unsigned char)dnaStr[d];
                fprintf(bfp, "0x%02X,", uch);
                if (d %24 == 23)
                    fprintf(bfp, "\n    ");
            }
            fprintf(bfp, "\n};\n");
            fprintf(bfp, "int DNAlen%s=sizeof(DNAstr%s);\n", (is64Bit ? "64" : ""), (is64Bit ? "64" : ""));
            fclose(bfp);
        }
#endif

        delete dna;
    }


    delete []buf;
    return 0;
}
Пример #30
0
void DNA::AddCell(const DNA& _D)
{
    nChain.insert(End(), _D.Begin(), _D.End());
}