static bool GetNetBSDProcessArgs (const ProcessInstanceInfoMatch *match_info_ptr, ProcessInstanceInfo &process_info) { if (!process_info.ProcessIDIsValid()) return false; int pid = process_info.GetProcessID(); int mib[4] = { CTL_KERN, KERN_PROC_ARGS, pid, KERN_PROC_ARGV }; char arg_data[8192]; size_t arg_data_size = sizeof(arg_data); if (::sysctl (mib, 4, arg_data, &arg_data_size , NULL, 0) != 0) return false; DataExtractor data (arg_data, arg_data_size, lldb::endian::InlHostByteOrder(), sizeof(void *)); lldb::offset_t offset = 0; const char *cstr; cstr = data.GetCStr (&offset); if (!cstr) return false; process_info.GetExecutableFile().SetFile(cstr, false); if (!(match_info_ptr == NULL || NameMatches (process_info.GetExecutableFile().GetFilename().GetCString(), match_info_ptr->GetNameMatchType(), match_info_ptr->GetProcessInfo().GetName()))) return false; Args &proc_args = process_info.GetArguments(); while (1) { const uint8_t *p = data.PeekData(offset, 1); while ((p != NULL) && (*p == '\0') && offset < arg_data_size) { ++offset; p = data.PeekData(offset, 1); } if (p == NULL || offset >= arg_data_size) break; cstr = data.GetCStr(&offset); if (!cstr) break; proc_args.AppendArgument(cstr); } return true; }
bool DWARFDebugMacinfoEntry::Extract(const DataExtractor& mac_info_data, dw_offset_t* offset_ptr) { if (mac_info_data.ValidOffset(*offset_ptr)) { m_type_code = mac_info_data.GetU8(offset_ptr); switch (m_type_code) { case DW_MACINFO_define: case DW_MACINFO_undef: // 2 operands: // Arg 1: operand encodes the line number of the source line on which // the relevant defining or undefining pre-processor directives // appeared. m_line = mac_info_data.GetULEB128(offset_ptr); // Arg 2: define string m_op2.cstr = mac_info_data.GetCStr(offset_ptr); break; case DW_MACINFO_start_file: // 2 operands: // Op 1: line number of the source line on which the inclusion // pre-processor directive occurred. m_line = mac_info_data.GetULEB128(offset_ptr); // Op 2: a source file name index to a file number in the statement // information table for the relevant compilation unit. m_op2.file_idx = mac_info_data.GetULEB128(offset_ptr); break; case 0: // End of list case DW_MACINFO_end_file: // No operands m_line = DW_INVALID_OFFSET; m_op2.cstr = NULL; break; default: // Vendor specific entries always have a ULEB128 and a string m_line = mac_info_data.GetULEB128(offset_ptr); m_op2.cstr = mac_info_data.GetCStr(offset_ptr); break; } return true; } else m_type_code = 0; return false; }
static void ParseFreeBSDThrMisc(ThreadData *thread_data, DataExtractor &data) { lldb::offset_t offset = 0; thread_data->name = data.GetCStr(&offset, 20); }
void CommunicationKDP::DumpPacket(Stream &s, const DataExtractor &packet) { const char *error_desc = NULL; if (packet.GetByteSize() < 8) { error_desc = "error: invalid packet (too short): "; } else { lldb::offset_t offset = 0; const uint8_t first_packet_byte = packet.GetU8(&offset); const uint8_t sequence_id = packet.GetU8(&offset); const uint16_t length = packet.GetU16(&offset); const uint32_t key = packet.GetU32(&offset); const CommandType command = ExtractCommand(first_packet_byte); const char *command_name = GetCommandAsCString(command); if (command_name) { const bool is_reply = ExtractIsReply(first_packet_byte); s.Printf("(running=%i) %s %24s: 0x%2.2x 0x%2.2x 0x%4.4x 0x%8.8x ", IsRunning(), is_reply ? "<--" : "-->", command_name, first_packet_byte, sequence_id, length, key); if (is_reply) { // Dump request reply packets switch (command) { // Commands that return a single 32 bit error case KDP_CONNECT: case KDP_WRITEMEM: case KDP_WRITEMEM64: case KDP_BREAKPOINT_SET: case KDP_BREAKPOINT_REMOVE: case KDP_BREAKPOINT_SET64: case KDP_BREAKPOINT_REMOVE64: case KDP_WRITEREGS: case KDP_LOAD: case KDP_WRITEIOPORT: case KDP_WRITEMSR64: { const uint32_t error = packet.GetU32(&offset); s.Printf(" (error=0x%8.8x)", error); } break; case KDP_DISCONNECT: case KDP_REATTACH: case KDP_HOSTREBOOT: case KDP_SUSPEND: case KDP_RESUMECPUS: case KDP_EXCEPTION: case KDP_TERMINATION: // No return value for the reply, just the header to ack s.PutCString(" ()"); break; case KDP_HOSTINFO: { const uint32_t cpu_mask = packet.GetU32(&offset); const uint32_t cpu_type = packet.GetU32(&offset); const uint32_t cpu_subtype = packet.GetU32(&offset); s.Printf(" (cpu_mask=0x%8.8x, cpu_type=0x%8.8x, cpu_subtype=0x%8.8x)", cpu_mask, cpu_type, cpu_subtype); } break; case KDP_VERSION: { const uint32_t version = packet.GetU32(&offset); const uint32_t feature = packet.GetU32(&offset); s.Printf(" (version=0x%8.8x, feature=0x%8.8x)", version, feature); } break; case KDP_REGIONS: { const uint32_t region_count = packet.GetU32(&offset); s.Printf(" (count = %u", region_count); for (uint32_t i = 0; i < region_count; ++i) { const addr_t region_addr = packet.GetPointer(&offset); const uint32_t region_size = packet.GetU32(&offset); const uint32_t region_prot = packet.GetU32(&offset); s.Printf("\n\tregion[%" PRIu64 "] = { range = [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 "), size = 0x%8.8x, prot = %s }", region_addr, region_addr, region_addr + region_size, region_size, GetPermissionsAsCString(region_prot)); } } break; case KDP_READMEM: case KDP_READMEM64: case KDP_READPHYSMEM64: { const uint32_t error = packet.GetU32(&offset); const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (error = 0x%8.8x:\n", error); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatBytesWithASCII, // Format to use 1, // Size of each item // in bytes count, // Number of items 16, // Number per line m_last_read_memory_addr, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_READREGS: { const uint32_t error = packet.GetU32(&offset); const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (error = 0x%8.8x regs:\n", error); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use m_addr_byte_size, // Size of each item // in bytes count / m_addr_byte_size, // Number of items 16 / m_addr_byte_size, // Number per line LLDB_INVALID_ADDRESS, // Don't // show addresses before // each line 0, 0); // No bitfields } break; case KDP_KERNELVERSION: { const char *kernel_version = packet.PeekCStr(8); s.Printf(" (version = \"%s\")", kernel_version); } break; case KDP_MAXBYTES: { const uint32_t max_bytes = packet.GetU32(&offset); s.Printf(" (max_bytes = 0x%8.8x (%u))", max_bytes, max_bytes); } break; case KDP_IMAGEPATH: { const char *path = packet.GetCStr(&offset); s.Printf(" (path = \"%s\")", path); } break; case KDP_READIOPORT: case KDP_READMSR64: { const uint32_t error = packet.GetU32(&offset); const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (error = 0x%8.8x io:\n", error); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in bytes count, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_DUMPINFO: { const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (count = %u, bytes = \n", count); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in // bytes count, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; default: s.Printf(" (add support for dumping this packet reply!!!"); break; } } else { // Dump request packets switch (command) { case KDP_CONNECT: { const uint16_t reply_port = ntohs(packet.GetU16(&offset)); const uint16_t exc_port = ntohs(packet.GetU16(&offset)); s.Printf(" (reply_port = %u, exc_port = %u, greeting = \"%s\")", reply_port, exc_port, packet.GetCStr(&offset)); } break; case KDP_DISCONNECT: case KDP_HOSTREBOOT: case KDP_HOSTINFO: case KDP_VERSION: case KDP_REGIONS: case KDP_KERNELVERSION: case KDP_MAXBYTES: case KDP_IMAGEPATH: case KDP_SUSPEND: // No args, just the header in the request... s.PutCString(" ()"); break; case KDP_RESUMECPUS: { const uint32_t cpu_mask = packet.GetU32(&offset); s.Printf(" (cpu_mask = 0x%8.8x)", cpu_mask); } break; case KDP_READMEM: { const uint32_t addr = packet.GetU32(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%8.8x, size = %u)", addr, size); m_last_read_memory_addr = addr; } break; case KDP_WRITEMEM: { const uint32_t addr = packet.GetU32(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%8.8x, size = %u, bytes = \n", addr, size); if (size > 0) DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr); } break; case KDP_READMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%16.16" PRIx64 ", size = %u)", addr, size); m_last_read_memory_addr = addr; } break; case KDP_READPHYSMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); const uint32_t lcpu = packet.GetU16(&offset); s.Printf(" (addr = 0x%16.16llx, size = %u, lcpu = %u)", addr, size, lcpu); m_last_read_memory_addr = addr; } break; case KDP_WRITEMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%16.16" PRIx64 ", size = %u, bytes = \n", addr, size); if (size > 0) DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr); } break; case KDP_WRITEPHYSMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); const uint32_t lcpu = packet.GetU16(&offset); s.Printf(" (addr = 0x%16.16llx, size = %u, lcpu = %u, bytes = \n", addr, size, lcpu); if (size > 0) DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr); } break; case KDP_READREGS: { const uint32_t cpu = packet.GetU32(&offset); const uint32_t flavor = packet.GetU32(&offset); s.Printf(" (cpu = %u, flavor = %u)", cpu, flavor); } break; case KDP_WRITEREGS: { const uint32_t cpu = packet.GetU32(&offset); const uint32_t flavor = packet.GetU32(&offset); const uint32_t nbytes = packet.GetByteSize() - offset; s.Printf(" (cpu = %u, flavor = %u, regs = \n", cpu, flavor); if (nbytes > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within // "packet" eFormatHex, // Format to use m_addr_byte_size, // Size of each item in // bytes nbytes / m_addr_byte_size, // Number of items 16 / m_addr_byte_size, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_BREAKPOINT_SET: case KDP_BREAKPOINT_REMOVE: { const uint32_t addr = packet.GetU32(&offset); s.Printf(" (addr = 0x%8.8x)", addr); } break; case KDP_BREAKPOINT_SET64: case KDP_BREAKPOINT_REMOVE64: { const uint64_t addr = packet.GetU64(&offset); s.Printf(" (addr = 0x%16.16" PRIx64 ")", addr); } break; case KDP_LOAD: { const char *path = packet.GetCStr(&offset); s.Printf(" (path = \"%s\")", path); } break; case KDP_EXCEPTION: { const uint32_t count = packet.GetU32(&offset); for (uint32_t i = 0; i < count; ++i) { const uint32_t cpu = packet.GetU32(&offset); const uint32_t exc = packet.GetU32(&offset); const uint32_t code = packet.GetU32(&offset); const uint32_t subcode = packet.GetU32(&offset); const char *exc_cstr = NULL; switch (exc) { case 1: exc_cstr = "EXC_BAD_ACCESS"; break; case 2: exc_cstr = "EXC_BAD_INSTRUCTION"; break; case 3: exc_cstr = "EXC_ARITHMETIC"; break; case 4: exc_cstr = "EXC_EMULATION"; break; case 5: exc_cstr = "EXC_SOFTWARE"; break; case 6: exc_cstr = "EXC_BREAKPOINT"; break; case 7: exc_cstr = "EXC_SYSCALL"; break; case 8: exc_cstr = "EXC_MACH_SYSCALL"; break; case 9: exc_cstr = "EXC_RPC_ALERT"; break; case 10: exc_cstr = "EXC_CRASH"; break; default: break; } s.Printf("{ cpu = 0x%8.8x, exc = %s (%u), code = %u (0x%8.8x), " "subcode = %u (0x%8.8x)} ", cpu, exc_cstr, exc, code, code, subcode, subcode); } } break; case KDP_TERMINATION: { const uint32_t term_code = packet.GetU32(&offset); const uint32_t exit_code = packet.GetU32(&offset); s.Printf(" (term_code = 0x%8.8x (%u), exit_code = 0x%8.8x (%u))", term_code, term_code, exit_code, exit_code); } break; case KDP_REATTACH: { const uint16_t reply_port = ntohs(packet.GetU16(&offset)); s.Printf(" (reply_port = %u)", reply_port); } break; case KDP_READMSR64: { const uint32_t address = packet.GetU32(&offset); const uint16_t lcpu = packet.GetU16(&offset); s.Printf(" (address=0x%8.8x, lcpu=0x%4.4x)", address, lcpu); } break; case KDP_WRITEMSR64: { const uint32_t address = packet.GetU32(&offset); const uint16_t lcpu = packet.GetU16(&offset); const uint32_t nbytes = packet.GetByteSize() - offset; s.Printf(" (address=0x%8.8x, lcpu=0x%4.4x, nbytes=0x%8.8x)", lcpu, address, nbytes); if (nbytes > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in // bytes nbytes, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_READIOPORT: { const uint16_t lcpu = packet.GetU16(&offset); const uint16_t address = packet.GetU16(&offset); const uint16_t nbytes = packet.GetU16(&offset); s.Printf(" (lcpu=0x%4.4x, address=0x%4.4x, nbytes=%u)", lcpu, address, nbytes); } break; case KDP_WRITEIOPORT: { const uint16_t lcpu = packet.GetU16(&offset); const uint16_t address = packet.GetU16(&offset); const uint16_t nbytes = packet.GetU16(&offset); s.Printf(" (lcpu = %u, addr = 0x%4.4x, nbytes = %u, bytes = \n", lcpu, address, nbytes); if (nbytes > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in // bytes nbytes, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_DUMPINFO: { const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (count = %u, bytes = \n", count); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in bytes count, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses before each line 0, 0); // No bitfields } break; } } } else { error_desc = "error: invalid packet command: "; } } if (error_desc) { s.PutCString(error_desc); DumpDataExtractor(packet, &s, // Stream to dump to 0, // Offset into "packet" eFormatBytes, // Dump as hex bytes 1, // Size of each item is 1 for // single bytes packet.GetByteSize(), // Number of bytes UINT32_MAX, // Num bytes per line LLDB_INVALID_ADDRESS, // Base address 0, 0); // Bitfield info set to not do // anything bitfield related } }
void SystemRuntimeMacOSX::PopulateQueuesUsingLibBTR (lldb::addr_t queues_buffer, uint64_t queues_buffer_size, uint64_t count, lldb_private::QueueList &queue_list) { Error error; DataBufferHeap data (queues_buffer_size, 0); Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYSTEM_RUNTIME)); if (m_process->ReadMemory (queues_buffer, data.GetBytes(), queues_buffer_size, error) == queues_buffer_size && error.Success()) { // We've read the information out of inferior memory; free it on the next call we make m_page_to_free = queues_buffer; m_page_to_free_size = queues_buffer_size; DataExtractor extractor (data.GetBytes(), data.GetByteSize(), m_process->GetByteOrder(), m_process->GetAddressByteSize()); offset_t offset = 0; uint64_t queues_read = 0; // The information about the queues is stored in this format (v1): // typedef struct introspection_dispatch_queue_info_s { // uint32_t offset_to_next; // dispatch_queue_t queue; // uint64_t serialnum; // queue's serialnum in the process, as provided by libdispatch // uint32_t running_work_items_count; // uint32_t pending_work_items_count; // // char data[]; // Starting here, we have variable-length data: // // char queue_label[]; // } introspection_dispatch_queue_info_s; while (queues_read < count && offset < queues_buffer_size) { offset_t start_of_this_item = offset; uint32_t offset_to_next = extractor.GetU32 (&offset); offset += 4; // Skip over the 4 bytes of reserved space addr_t queue = extractor.GetPointer (&offset); uint64_t serialnum = extractor.GetU64 (&offset); uint32_t running_work_items_count = extractor.GetU32 (&offset); uint32_t pending_work_items_count = extractor.GetU32 (&offset); // Read the first field of the variable length data offset = start_of_this_item + m_lib_backtrace_recording_info.queue_info_data_offset; const char *queue_label = extractor.GetCStr (&offset); if (queue_label == NULL) queue_label = ""; offset_t start_of_next_item = start_of_this_item + offset_to_next; offset = start_of_next_item; if (log) log->Printf ("SystemRuntimeMacOSX::PopulateQueuesUsingLibBTR added queue with dispatch_queue_t 0x%" PRIx64 ", serial number 0x%" PRIx64 ", running items %d, pending items %d, name '%s'", queue, serialnum, running_work_items_count, pending_work_items_count, queue_label); QueueSP queue_sp (new Queue (m_process->shared_from_this(), serialnum, queue_label)); queue_sp->SetNumRunningWorkItems (running_work_items_count); queue_sp->SetNumPendingWorkItems (pending_work_items_count); queue_sp->SetLibdispatchQueueAddress (queue); queue_sp->SetKind (GetQueueKind (queue)); queue_list.AddQueue (queue_sp); queues_read++; } } }
lldb::offset_t lldb_private::DumpDataExtractor( const DataExtractor &DE, Stream *s, offset_t start_offset, lldb::Format item_format, size_t item_byte_size, size_t item_count, size_t num_per_line, uint64_t base_addr, uint32_t item_bit_size, // If zero, this is not a bitfield value, if // non-zero, the value is a bitfield uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the // shift amount to apply to a bitfield ExecutionContextScope *exe_scope) { if (s == nullptr) return start_offset; if (item_format == eFormatPointer) { if (item_byte_size != 4 && item_byte_size != 8) item_byte_size = s->GetAddressByteSize(); } offset_t offset = start_offset; if (item_format == eFormatInstruction) { TargetSP target_sp; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { DisassemblerSP disassembler_sp(Disassembler::FindPlugin( target_sp->GetArchitecture(), target_sp->GetDisassemblyFlavor(), nullptr)); if (disassembler_sp) { lldb::addr_t addr = base_addr + start_offset; lldb_private::Address so_addr; bool data_from_file = true; if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { data_from_file = false; } else { if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr)) so_addr.SetRawAddress(addr); } size_t bytes_consumed = disassembler_sp->DecodeInstructions( so_addr, DE, start_offset, item_count, false, data_from_file); if (bytes_consumed) { offset += bytes_consumed; const bool show_address = base_addr != LLDB_INVALID_ADDRESS; const bool show_bytes = true; ExecutionContext exe_ctx; exe_scope->CalculateExecutionContext(exe_ctx); disassembler_sp->GetInstructionList().Dump(s, show_address, show_bytes, &exe_ctx); } } } else s->Printf("invalid target"); return offset; } if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8) item_format = eFormatHex; lldb::offset_t line_start_offset = start_offset; for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count; ++count) { if ((count % num_per_line) == 0) { if (count > 0) { if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } s->EOL(); } if (base_addr != LLDB_INVALID_ADDRESS) s->Printf("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset) / DE.getTargetByteSize())); line_start_offset = offset; } else if (item_format != eFormatChar && item_format != eFormatCharPrintable && item_format != eFormatCharArray && count > 0) { s->PutChar(' '); } switch (item_format) { case eFormatBoolean: if (item_byte_size <= 8) s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false"); else { s->Printf("error: unsupported byte size (%" PRIu64 ") for boolean format", (uint64_t)item_byte_size); return offset; } break; case eFormatBinary: if (item_byte_size <= 8) { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); // Avoid std::bitset<64>::to_string() since it is missing in // earlier C++ libraries std::string binary_value(64, '0'); std::bitset<64> bits(uval64); for (uint32_t i = 0; i < 64; ++i) if (bits[i]) binary_value[64 - 1 - i] = '1'; if (item_bit_size > 0) s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size); else if (item_byte_size > 0 && item_byte_size <= 8) s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8); } else { const bool is_signed = false; const unsigned radix = 2; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatBytes: case eFormatBytesWithASCII: for (uint32_t i = 0; i < item_byte_size; ++i) { s->Printf("%2.2x", DE.GetU8(&offset)); } // Put an extra space between the groups of bytes if more than one // is being dumped in a group (item_byte_size is more than 1). if (item_byte_size > 1) s->PutChar(' '); break; case eFormatChar: case eFormatCharPrintable: case eFormatCharArray: { // If we are only printing one character surround it with single // quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); if (isprint(ch)) s->Printf("%c", (char)ch); else if (item_format != eFormatCharPrintable) { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: if (item_byte_size == 1) s->Printf("\\x%2.2x", (uint8_t)ch); else s->Printf("%" PRIu64, ch); break; } } else { s->PutChar(NON_PRINTABLE_CHAR); } // If we are only printing one character surround it with single quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); } break; case eFormatEnum: // Print enum value as a signed integer when we don't get // the enum type case eFormatDecimal: if (item_byte_size <= 8) s->Printf("%" PRId64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = true; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatUnsigned: if (item_byte_size <= 8) s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOctal: if (item_byte_size <= 8) s->Printf("0%" PRIo64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 8; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOSType: { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->PutChar('\''); for (uint32_t i = 0; i < item_byte_size; ++i) { uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8)); if (isprint(ch)) s->Printf("%c", ch); else { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: s->Printf("\\x%2.2x", ch); break; } } } s->PutChar('\''); } break; case eFormatCString: { const char *cstr = DE.GetCStr(&offset); if (!cstr) { s->Printf("NULL"); offset = LLDB_INVALID_OFFSET; } else { s->PutChar('\"'); while (const char c = *cstr) { if (isprint(c)) { s->PutChar(c); } else { switch (c) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; default: s->Printf("\\x%2.2x", c); break; } } ++cstr; } s->PutChar('\"'); } } break; case eFormatPointer: s->Address(DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof(addr_t)); break; case eFormatComplexInteger: { size_t complex_int_byte_size = item_byte_size / 2; if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) { s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); s->Printf(" + %" PRIu64 "i", DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex integer format", (uint64_t)item_byte_size); return offset; } } break; case eFormatComplex: if (sizeof(float) * 2 == item_byte_size) { float f32_1 = DE.GetFloat(&offset); float f32_2 = DE.GetFloat(&offset); s->Printf("%g + %gi", f32_1, f32_2); break; } else if (sizeof(double) * 2 == item_byte_size) { double d64_1 = DE.GetDouble(&offset); double d64_2 = DE.GetDouble(&offset); s->Printf("%lg + %lgi", d64_1, d64_2); break; } else if (sizeof(long double) * 2 == item_byte_size) { long double ld64_1 = DE.GetLongDouble(&offset); long double ld64_2 = DE.GetLongDouble(&offset); s->Printf("%Lg + %Lgi", ld64_1, ld64_2); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex float format", (uint64_t)item_byte_size); return offset; } break; default: case eFormatDefault: case eFormatHex: case eFormatHexUppercase: { bool wantsuppercase = (item_format == eFormatHexUppercase); switch (item_byte_size) { case 1: case 2: case 4: case 8: s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; default: { assert(item_bit_size == 0 && item_bit_offset == 0); const uint8_t *bytes = (const uint8_t *)DE.GetData(&offset, item_byte_size); if (bytes) { s->PutCString("0x"); uint32_t idx; if (DE.GetByteOrder() == eByteOrderBig) { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]); } else { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]); } } } break; } } break; case eFormatFloat: { TargetSP target_sp; bool used_apfloat = false; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext(); if (clang_ast) { clang::ASTContext *ast = clang_ast->getASTContext(); if (ast) { llvm::SmallVector<char, 256> sv; // Show full precision when printing float values const unsigned format_precision = 0; const unsigned format_max_padding = 100; size_t item_bit_size = item_byte_size * 8; if (item_bit_size == ast->getTypeSize(ast->FloatTy)) { llvm::APInt apint(item_bit_size, DE.GetMaxU64(&offset, item_byte_size)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) { llvm::APInt apint; if (GetAPInt(DE, &offset, item_byte_size, apint)) { llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) { const auto &semantics = ast->getFloatTypeSemantics(ast->LongDoubleTy); const auto byte_size = (llvm::APFloat::getSizeInBits(semantics) + 7) / 8; llvm::APInt apint; if (GetAPInt(DE, &offset, byte_size, apint)) { llvm::APFloat apfloat(semantics, apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) { llvm::APInt apint(item_bit_size, DE.GetU16(&offset)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } if (!sv.empty()) { s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data()); used_apfloat = true; } } } } if (!used_apfloat) { std::ostringstream ss; if (item_byte_size == sizeof(float) || item_byte_size == 2) { float f; if (item_byte_size == 2) { uint16_t half = DE.GetU16(&offset); f = half2float(half); } else { f = DE.GetFloat(&offset); } ss.precision(std::numeric_limits<float>::digits10); ss << f; } else if (item_byte_size == sizeof(double)) { ss.precision(std::numeric_limits<double>::digits10); ss << DE.GetDouble(&offset); } else if (item_byte_size == sizeof(long double) || item_byte_size == 10) { ss.precision(std::numeric_limits<long double>::digits10); ss << DE.GetLongDouble(&offset); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for float format", (uint64_t)item_byte_size); return offset; } ss.flush(); s->Printf("%s", ss.str().c_str()); } } break; case eFormatUnicode16: s->Printf("U+%4.4x", DE.GetU16(&offset)); break; case eFormatUnicode32: s->Printf("U+0x%8.8x", DE.GetU32(&offset)); break; case eFormatAddressInfo: { addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr); if (exe_scope) { TargetSP target_sp(exe_scope->CalculateTarget()); lldb_private::Address so_addr; if (target_sp) { if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { s->PutChar(' '); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription, Address::DumpStyleModuleWithFileAddress); } else { so_addr.SetOffset(addr); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedPointerDescription); } } } } break; case eFormatHexFloat: if (sizeof(float) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetFloat(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else if (sizeof(double) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetDouble(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for hex float format", (uint64_t)item_byte_size); return offset; } break; // please keep the single-item formats below in sync with // FormatManager::GetSingleItemFormat // if you fail to do so, users will start getting different outputs // depending on internal // implementation details they should not care about || case eFormatVectorOfChar: // || s->PutChar('{'); // \/ offset = DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt16: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt32: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt64: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2, item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt128: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; } } if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } return offset; // Return the offset at which we ended up }
bool DWARFFormValue::SkipValue(dw_form_t form, const DataExtractor& debug_info_data, lldb::offset_t *offset_ptr, const DWARFCompileUnit* cu) { switch (form) { // Blocks if inlined data that have a length field and the data bytes // inlined in the .debug_info case DW_FORM_exprloc: case DW_FORM_block: { dw_uleb128_t size = debug_info_data.GetULEB128(offset_ptr); *offset_ptr += size; } return true; case DW_FORM_block1: { dw_uleb128_t size = debug_info_data.GetU8(offset_ptr); *offset_ptr += size; } return true; case DW_FORM_block2: { dw_uleb128_t size = debug_info_data.GetU16(offset_ptr); *offset_ptr += size; } return true; case DW_FORM_block4: { dw_uleb128_t size = debug_info_data.GetU32(offset_ptr); *offset_ptr += size; } return true; // Inlined NULL terminated C-strings case DW_FORM_string: debug_info_data.GetCStr(offset_ptr); return true; // Compile unit address sized values case DW_FORM_addr: *offset_ptr += DWARFCompileUnit::GetAddressByteSize(cu); return true; case DW_FORM_ref_addr: if (cu->GetVersion() <= 2) *offset_ptr += DWARFCompileUnit::GetAddressByteSize(cu); else *offset_ptr += 4;// 4 for DWARF32, 8 for DWARF64, but we don't support DWARF64 yet return true; // 0 bytes values (implied from DW_FORM) case DW_FORM_flag_present: return true; // 1 byte values case DW_FORM_data1: case DW_FORM_flag: case DW_FORM_ref1: *offset_ptr += 1; return true; // 2 byte values case DW_FORM_data2: case DW_FORM_ref2: *offset_ptr += 2; return true; // 32 bit for DWARF 32, 64 for DWARF 64 case DW_FORM_sec_offset: *offset_ptr += 4; return true; // 4 byte values case DW_FORM_strp: case DW_FORM_data4: case DW_FORM_ref4: *offset_ptr += 4; return true; // 8 byte values case DW_FORM_data8: case DW_FORM_ref8: case DW_FORM_ref_sig8: *offset_ptr += 8; return true; // signed or unsigned LEB 128 values case DW_FORM_sdata: case DW_FORM_udata: case DW_FORM_ref_udata: debug_info_data.Skip_LEB128(offset_ptr); return true; case DW_FORM_indirect: { dw_form_t indirect_form = debug_info_data.GetULEB128(offset_ptr); return DWARFFormValue::SkipValue (indirect_form, debug_info_data, offset_ptr, cu); } default: break; } return false; }
bool DWARFFormValue::ExtractValue(const DataExtractor& data, lldb::offset_t* offset_ptr, const DWARFCompileUnit* cu) { bool indirect = false; bool is_block = false; m_value.data = NULL; // Read the value for the form into value and follow and DW_FORM_indirect instances we run into do { indirect = false; switch (m_form) { case DW_FORM_addr: m_value.value.uval = data.GetMaxU64(offset_ptr, DWARFCompileUnit::GetAddressByteSize(cu)); break; case DW_FORM_block2: m_value.value.uval = data.GetU16(offset_ptr); is_block = true; break; case DW_FORM_block4: m_value.value.uval = data.GetU32(offset_ptr); is_block = true; break; case DW_FORM_data2: m_value.value.uval = data.GetU16(offset_ptr); break; case DW_FORM_data4: m_value.value.uval = data.GetU32(offset_ptr); break; case DW_FORM_data8: m_value.value.uval = data.GetU64(offset_ptr); break; case DW_FORM_string: m_value.value.cstr = data.GetCStr(offset_ptr); // Set the string value to also be the data for inlined cstr form values only // so we can tell the differnence between DW_FORM_string and DW_FORM_strp form // values; m_value.data = (uint8_t*)m_value.value.cstr; break; case DW_FORM_exprloc: case DW_FORM_block: m_value.value.uval = data.GetULEB128(offset_ptr); is_block = true; break; case DW_FORM_block1: m_value.value.uval = data.GetU8(offset_ptr); is_block = true; break; case DW_FORM_data1: m_value.value.uval = data.GetU8(offset_ptr); break; case DW_FORM_flag: m_value.value.uval = data.GetU8(offset_ptr); break; case DW_FORM_sdata: m_value.value.sval = data.GetSLEB128(offset_ptr); break; case DW_FORM_strp: m_value.value.uval = data.GetU32(offset_ptr); break; // case DW_FORM_APPLE_db_str: case DW_FORM_udata: m_value.value.uval = data.GetULEB128(offset_ptr); break; case DW_FORM_ref_addr: if (cu->GetVersion() <= 2) m_value.value.uval = data.GetMaxU64(offset_ptr, DWARFCompileUnit::GetAddressByteSize(cu)); else m_value.value.uval = data.GetU32(offset_ptr); // 4 for DWARF32, 8 for DWARF64, but we don't support DWARF64 yet break; case DW_FORM_ref1: m_value.value.uval = data.GetU8(offset_ptr); break; case DW_FORM_ref2: m_value.value.uval = data.GetU16(offset_ptr); break; case DW_FORM_ref4: m_value.value.uval = data.GetU32(offset_ptr); break; case DW_FORM_ref8: m_value.value.uval = data.GetU64(offset_ptr); break; case DW_FORM_ref_udata: m_value.value.uval = data.GetULEB128(offset_ptr); break; case DW_FORM_indirect: m_form = data.GetULEB128(offset_ptr); indirect = true; break; case DW_FORM_sec_offset: m_value.value.uval = data.GetU32(offset_ptr); break; case DW_FORM_flag_present: m_value.value.uval = 1; break; case DW_FORM_ref_sig8: m_value.value.uval = data.GetU64(offset_ptr); break; default: return false; break; } } while (indirect); if (is_block) { m_value.data = data.PeekData(*offset_ptr, m_value.value.uval); if (m_value.data != NULL) { *offset_ptr += m_value.value.uval; } } return true; }