Пример #1
0
void SingleTimestepCollisionEvaluator::CalcDists(const DblVec& x, DblVec& dists, DblVec& weights) {
  DblVec dofvals = getDblVec(x, m_vars);
  m_rad->SetDOFValues(dofvals);
  vector<Collision> collisions;
  GetCollisionsCached(dofvals, collisions);
  dists.reserve(dists.size() + collisions.size());
  weights.reserve(weights.size() + collisions.size());
  BOOST_FOREACH(const Collision& col, collisions) {
    Link2Int::iterator itA = m_link2ind.find(col.linkA),
                       itB = m_link2ind.find(col.linkB);
    if (itA != m_link2ind.end() || itB != m_link2ind.end()) {
      dists.push_back(col.distance);
      weights.push_back(col.weight);
    }
  }
Пример #2
0
void displayGradient(DblVec& gradientP){
	cout << "DEBUG DISPLAY GRADIENT\n";
	for(size_t i = 0; i < gradientP.size(); i++){
		if(gradientP[i] != 0) cout << i << " : " << gradientP[i] << endl;
	}
	cout << "DEBUG DISPLAY GRADIENT OVER\n";
}
Пример #3
0
double cal_score(vector <size_t> instance){
	//f(x)=(UW)(TV)' + Px
	double score = 0.0;
	DblVec UW;
	DblVec TV;
	int dimLatent = W.size() / getUserFeaCount();
	for (size_t j = 0 ; j < dimLatent; j++){
		UW.push_back(0);
		TV.push_back(0);
	}
	for (size_t j = 0; j < instance.size(); j++){
		score += P[instance[j]] * 1.0;
		if(instance[j] < getAdFeaCount()){
			for(size_t k = 0; k < dimLatent; k++){
				int v_index = instance[j] * dimLatent + k;
				TV[k]+=V[v_index];
			}
		} 
		else if(instance[j] < getAdFeaCount() + getUserFeaCount()){
			for(size_t k = 0; k < dimLatent; k++){
				int w_index = (instance[j] - getAdFeaCount())*dimLatent + k;
				UW[k] += W[w_index];
			}
		}
	}
	
	for (size_t j = 0; j < dimLatent; j++){
		score += UW[j]*TV[j];
	}

	return score;
}
Пример #4
0
ConvexConstraintsPtr ZMPConstraint::convex(const DblVec& x, Model* model) {
  DblVec curvals = getDblVec(x, m_vars);
  m_rad->SetDOFValues(curvals);
  DblMatrix jacmoment = DblMatrix::Zero(3, curvals.size());
  OR::Vector moment(0,0,0);
  float totalmass = 0;
  BOOST_FOREACH(const KinBody::LinkPtr& link, m_rad->GetRobot()->GetLinks()) {
    if (!link->GetGeometries().empty()) {
      OR::Vector cm = link->GetGlobalCOM();
      moment += cm * link->GetMass();
      jacmoment += m_rad->PositionJacobian(link->GetIndex(), cm) * link->GetMass();
      totalmass += link->GetMass();
    }
  }
  moment /= totalmass;
  jacmoment /= totalmass;

  AffExpr x_expr = AffExpr(moment.x) + varDot(jacmoment.row(0), m_vars) - jacmoment.row(0).dot(toVectorXd(curvals));
  AffExpr y_expr = AffExpr(moment.y) + varDot(jacmoment.row(1), m_vars) - jacmoment.row(1).dot(toVectorXd(curvals));

  ConvexConstraintsPtr out(new ConvexConstraints(model));
  for (int i=0; i < m_ab.rows(); ++i) {
    out->addIneqCnt(m_ab(i,0) * x_expr + m_ab(i,1) * y_expr + m_c(i));
  }
  return out;
}
Пример #5
0
double OptimizerState::dotProduct(const DblVec& a, const DblVec& b){
	double result = 0;
	for(size_t i=0; i < a.size(); i++){
		result += a[i] * b[i];
	}
	return result;
}
Пример #6
0
double LogisticRegressionObjective::EvalLocal(const DblVec& input, DblVec& gradient){
	double loss = 0.0;
	for (size_t i = 0; i < input.size(); i++){
		loss += 0.5 * input[i] * input[i] * l2weight;
		gradient[i] = l2weight * input[i];
	}
	

	for (size_t i = 0; i < problem.NumInstances(); i++){
		double score = problem.ScoreOf(i, input);
		double insLoss, insProb;
		if (score < -30){
			insLoss = -score;
			insProb = 0;
		}else if (score > 30){
			insLoss = 0;
			insProb = 1;
		}else {
			double temp = 1.0 + exp(-score);
			insLoss = log(temp);
			insProb = 1.0/ temp;
		}
		loss += insLoss;
		problem.AddMultTo(i, 1.0 - insProb, gradient);	
	}
	return loss ;
}
Пример #7
0
double OptimizerState::dotProduct(const DblVec& a, const DblVec& b){
	double result = 0;
//	cout << a[0] << " " << b[0] << endl;
	for(size_t i=0; i < a.size(); i++){
		
		result += a[i] * b[i];
	}
	return result;
}
void testProblem(ScalarOfVectorPtr f, VectorOfVectorPtr g, ConstraintType cnt_type,
  const DblVec& init, const DblVec& sol) {
    OptProbPtr prob;
    size_t n = init.size();
    assert (sol.size() == n);
    setupProblem(prob, n);
    prob->addCost(CostPtr(new CostFromFunc(f, prob->getVars(), "f", true)));
    prob->addConstraint(ConstraintPtr(new ConstraintFromFunc(g, prob->getVars(), VectorXd(), cnt_type,"g")));
    BasicTrustRegionSQP solver(prob);
    solver.max_iter_ = 1000;
    solver.min_trust_box_size_ = 1e-5;
    solver.min_approx_improve_ = 1e-10;
    solver.merit_error_coeff_ = 1;
    
    solver.initialize(init);
    OptStatus status = solver.optimize();
    EXPECT_EQ(status, OPT_CONVERGED);
    expectAllNear(solver.x(), sol, .01);
}
Пример #9
0
VectorXd RotationError::operator()(const VectorXd& a) const {
    DblVec phis;
    DblVec Deltas;
    phis = toDblVec(a);
    VectorXd ret(1);
    ret(0) = -this->total_rotation_limit;
    for (int i = 0; i < phis.size(); ++i) {
        ret(0) += fabs(phis[i]);
    }
    return ret;
}
Пример #10
0
double calSparsity(const DblVec& vec, size_t dimLatent){
	int num = vec.size() / dimLatent;
	int sparseNum = 0;
	double sum = 0;
	for(int i = 0; i < num; i++){ 
		sum = 0;
		for(int j = 0; j < dimLatent; j++)
		sum += vec[i*dimLatent+j] * vec[i*dimLatent+j];
		if(sum < 1e-10) sparseNum++;
	}
	return (double)sparseNum / num;
} 
Пример #11
0
void printVector(const DblVec &vec, const char* filename) {
	ofstream outfile(filename);
	if (!outfile.good()) {
		cerr << "error opening matrix file " << filename << endl;
		exit(1);
	}

	for (size_t i=0; i<vec.size(); i++) {
		outfile << vec[i] << endl;
	}
	outfile.close();
}
Пример #12
0
VectorXd CurvatureError::operator()(const VectorXd& a) const {
    DblVec curvatures;
    DblVec Deltas;
    curvatures = toDblVec(a.head(pi->curvature_vars.size()));
    Deltas = DblVec(pi->curvature_vars.size(), a(a.size() - 1));
    VectorXd ret(1);
    ret(0) = -this->total_curvature_limit;
    for (int i = 0; i < curvatures.size(); ++i) {
        ret(0) += fabs(curvatures[i]) * Deltas[i];
    }
    return ret;
}
Пример #13
0
double CurvatureCost::operator()(const VectorXd& a) const {
    DblVec curvatures;
    DblVec Deltas;
    curvatures = toDblVec(a.head(pi->curvature_vars.size()));
    Deltas = DblVec(pi->curvature_vars.size(), a(a.size() - 1));
    double ret = 0;
    for (int i = 0; i < curvatures.size(); ++i)
    {
        double tmp = curvatures[i] * Deltas[i];
        ret += tmp * tmp;
    }
    return ret * coeff;
}
Пример #14
0
double LogisticRegressionObjective::EvalLocalMultiThread(const DblVec& input, DblVec& gradient){
	
	/*
	create 24 thread;
	each thread calculate a loss and gradient
	*/
	int threadNum = 24;
	double lossList[threadNum];
	DblVec *gradList = new DblVec[threadNum];
	for(int i = 0; i < threadNum; i++){
		gradList[i] = DblVec(gradient.size());
	}
	threadList = new pthread_t[threadNum];
	
	for(int i = 0; i < threadNum; i++){
		Parameter*p = new Parameter(*this, input, gradList[i], lossList[i], i, threadNum);
		pthread_create(&threadList[i], NULL, ThreadEvalLocal, p);
	}
	
	for(int i = 0; i < threadNum; i++){
		pthread_join(threadList[i], NULL);
	}
	
	double loss = 0.0;
	for(int j = 0; j < gradient.size(); j++){
		gradient[j] = 0.0;
	}
	for(int i = 0; i < threadNum; i++){
		loss += lossList[i];
		for(int j = 0; j < gradient.size(); j++){
			gradient[j] += gradList[i][j];
		}
	}
	delete []gradList;
	delete []threadList;
	return loss;
	
}
Пример #15
0
double Mse(const DblVec &rec, const char* filename) {
	static DblVec temp(rec.size());
	ifstream infile(filename);
	if (!infile.good()) {
		cerr << "error opening matrix file " << filename << endl;
		exit(1);
	}
	// outfile << "%%MatrixMarket matrix array real general" << endl;
	// outfile << "1 " << vec.size() << endl;
	for (size_t i=0; i<rec.size(); i++) {
		float val;
		infile >> val;
		temp[i] = val;
	}
	infile.close();

	double final_mse = 0;
	for (size_t i=0; i<rec.size();i++){
		final_mse += (rec[i]-temp[i])*(rec[i]-temp[i]);
	}
	final_mse /=rec.size();
	return final_mse;
}
Пример #16
0
double LogisticRegressionObjective::Eval(const DblVec& input, DblVec& gradient){
//	clock_t start,finish;
//	double totaltime;

	DblVec localInput = input;
	DblVec localGradient = gradient;
	MPI_Bcast(&localInput[0], localInput.size(), MPI_DOUBLE, 0, MPI_COMM_WORLD);	
	MPI_Bcast(&localGradient[0], localGradient.size(), MPI_DOUBLE, 0, MPI_COMM_WORLD);

	

	double loss = EvalLocalMultiThread(localInput, localGradient);
	
	
//	start=clock();
//	double loss = EvalLocal(localInput, localGradient);	
	double gloss = 0.0;
	MPI_Reduce(&localGradient[0], &gradient[0], input.size(), MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
	MPI_Reduce(&loss, &gloss, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
//	finish=clock();
//	totaltime=(double)(finish-start)/CLOCKS_PER_SEC;
//	cout<<"\nReduce Time: "<<totaltime<<"seconds"<<endl;
	return gloss;
}
Пример #17
0
 double NeedleCollisionClearanceCost::value(const vector<double>& x, Model* model) {
   DblVec dists;
   EnvironmentBasePtr env = helper->pis[0]->local_configs[0]->GetEnv();
   BOOST_FOREACH(const CollisionEvaluatorPtr& cc, this->ccs) {
     DblVec tmp_dists;
     cc->CalcDists(x, tmp_dists);
     for (int i = 0; i < tmp_dists.size(); ++i) {
       dists.push_back(-tmp_dists[i]);
     }
   }
   if (dists.size() > 0) {
     return vecMax(dists) * this->coeff;
   } else {
     return - helper->collision_clearance_threshold * this->coeff;
   }
 }
Пример #18
0
void CirclesSeparation::initialize(DblVec &x, DblVec &y, DblVec r, DblVec m) {
	_N = (int)x.size();
	double minx = 10000, maxx = -10000, miny = 10000, maxy = -10000;
	int i;
	for (i = 0; i < _N; ++i) {
		minx = min(minx, x[i]);
		maxx = max(maxx, x[i]);
		miny = min(miny, y[i]);
		maxy = max(maxy, y[i]);
	}
	_cenx = (minx+maxx) * 0.5;
	_ceny = (miny+maxy) * 0.5;
	for (i = 0; i < _N; ++i) {
		x[i] -= _cenx, y[i] -= _ceny;
	}
	_x = x, _y = y, _r = r, _m = m, _ox = x, _oy = y;
}
Пример #19
0
double SparseLeastSquaresObjective::Eval(const DblVec& input, DblVec& gradient) {
	static DblVec temp(problem.n);

	if (input.size() != problem.numFeats) {
		cerr << "Error: input is not the correct size." << endl;
		exit(1);
	}

	for (size_t i=0; i<problem.n; i++) {
		temp[i] = -problem.target[i];

		for (size_t j=problem.instance_starts[i]; j < problem.instance_starts[i+1]; j++) {
			size_t idx = problem.indices[j];
			double val = (double) problem.values[j];
			temp[i] += input[idx] * val;
		}
	}
	
	double value = 0.0;
	for (size_t j=0; j<problem.numFeats; j++) {
		value += input[j] * input[j] * l2weight;
		gradient[j] = l2weight * input[j];
	}

	for (size_t i=0; i<problem.n; i++) {
		if (temp[i] == 0) continue;

		value += temp[i] * temp[i];

		for (size_t j=problem.instance_starts[i]; j<problem.instance_starts[i+1]; j++) {
			size_t idx = problem.indices[j];
			double val = (double) problem.values[j];
			gradient[idx] += val * temp[i];
		}

	}

	return 0.5 * value + 1.0;
}
Пример #20
0
void InitInfo::fromJson(const Json::Value& v) {
  string type_str;
  childFromJson(v, type_str, "type");
  int n_steps = gPCI->basic_info.n_steps;
  int n_dof = gPCI->rad->GetDOF();

  if (type_str == "stationary") {
    data = toVectorXd(gPCI->rad->GetDOFValues()).transpose().replicate(n_steps, 1);
  }
  else if (type_str == "given_traj") {
    FAIL_IF_FALSE(v.isMember("data"));
    const Value& vdata = v["data"];
    if (vdata.size() != n_steps) {
      PRINT_AND_THROW("given initialization traj has wrong length");
    }
    data.resize(n_steps, n_dof);
    for (int i=0; i < n_steps; ++i) {
      DblVec row;
      fromJsonArray(vdata[i], row, n_dof);
      data.row(i) = toVectorXd(row);
    }
  }
  else if (type_str == "straight_line") {
    FAIL_IF_FALSE(v.isMember("endpoint"));
    DblVec endpoint;
    childFromJson(v, endpoint, "endpoint");
    if (endpoint.size() != n_dof) {
      PRINT_AND_THROW(boost::format("wrong number of dof values in initialization. expected %i got %j")%n_dof%endpoint.size());
    }
    data = TrajArray(n_steps, n_dof);
    DblVec start = gPCI->rad->GetDOFValues();
    for (int idof = 0; idof < n_dof; ++idof) {
      data.col(idof) = VectorXd::LinSpaced(n_steps, start[idof], endpoint[idof]);
    }
  }

}
Пример #21
0
void OptimizerState::scaleInto(DblVec& a, const DblVec& b, double c){
	for (size_t i= 0; i < a.size(); i++){
		a[i] = b[i] * c;
	}
}
Пример #22
0
void OptimizerState::scale(DblVec& a, double b){
	for (size_t i = 0; i < a.size(); i++){
		a[i] *= b;
	}
} 
Пример #23
0
void OptimizerState::addMultInto(DblVec& a, const DblVec& b, const DblVec& c, double d){
	for (size_t i = 0; i < a.size(); i++){
		a[i] = b[i] + c[i] * d;
	}
} 
Пример #24
0
void OptimizerState::add(DblVec& a, const DblVec& b){
	for (size_t i = 0; i <a.size(); i++){
		a[i] += b[i];
	}
}
Пример #25
0
void OptimizerState::addMult(DblVec& a, const DblVec& b, double c){
	for (size_t i = 0; i < a.size(); i++){
		a[i] += b[i] * c;
	}
}
Пример #26
0
inline double vecSum(const DblVec& v) {
  double out = 0;
  for (int i=0; i < v.size(); ++i) out += v[i];
  return out;
}
Пример #27
0
inline double vecAbsSum(const DblVec& v) {
  double out = 0;
  for (int i=0; i < v.size(); ++i) out += fabs(v[i]);
  return out;
}
void expectAllNear(const DblVec& x, const DblVec& y, double abstol) {
  EXPECT_EQ(x.size(), y.size());
  stringstream ss;
  LOG_INFO("checking %s ?= %s", CSTR(x), CSTR(y));
  for (size_t i=0; i < x.size(); ++i) EXPECT_NEAR(x[i], y[i], abstol);
}
Пример #29
0
inline double vecHingeSum(const DblVec& v) {
  double out = 0;
  for (int i=0; i < v.size(); ++i) out += pospart(v[i]);
  return out;
}
Пример #30
0
inline double vecDot(const DblVec& a, const DblVec& b) {
  assert(a.size() == b.size());
  double out=0;
  for (int i=0; i < a.size(); ++i) out += a[i]*b[i];
  return out;
}