bool ArtificialBeeColony::calculateProbabilities(StateP state, DemeP deme) { IndividualP bestFood = selBestOp->select(*deme); double bestFitness = bestFood->fitness->getValue(); double worstFitness = selWorstOp->select(*deme)->fitness->getValue(); double offset = 0; // scale fitness values if(bestFitness < worstFitness && bestFitness < 0) offset = 0.1 - bestFitness; // minimization else if(worstFitness < 0) offset = 0.1 - worstFitness; // maximization // for each food source for( uint i = 0; i < deme->getSize(); i++ ) { IndividualP food = deme->at(i); double thisFitness = food->fitness->getValue(); if (bestFitness == thisFitness) probability_[i] = 1.0; else if (thisFitness < bestFitness) // maximization problems probability_[i] = 0.1 + 0.9 * (thisFitness + offset) / (bestFitness + offset); else // minimization problems probability_[i] = 0.1 + 0.9 * (bestFitness + offset) / (thisFitness + offset); // using selFitPropOp method //probability_[i] = 0.1 + 0.9 * (thisFitness - worstFitness)/(bestFitness - worstFitness); } return true; }
bool DifferentialEvolution::advanceGeneration(StateP state, DemeP deme) { // create donor vectors for each population member for(uint iIter = 0; iIter < deme->size(); iIter++){ createDonorVectors(deme, state); } // perform DE crossover, generate trial vectors (stored in donor_vector) for(uint iIter = 0; iIter < deme->size(); iIter++) { crossover(deme, iIter, state); } // select the better one for each population member and trial vector for(uint iIter = 0; iIter < deme->size(); iIter++) { evaluate(donor_vector[iIter]); if(donor_vector[iIter]->fitness->isBetterThan(deme->at(iIter)->fitness)) replaceWith(deme->at(iIter), donor_vector[iIter]); } //for(uint i = 0; i < deme->size(); i++){ // state->getLogger()->log(5, "deme[" + uint2str(i) + "]: " + dbl2str(deme->at(i)->fitness->getValue()) + "\t" + uint2str(deme->at(i)->index)); //} donor_vector.clear(); return true; }
bool scoutBeesPhase(StateP state, DemeP deme){ IndividualP unimproved ; double maxTrial = 0; for( uint i = 0; i < deme->getSize(); i++ ) { // for each food source IndividualP food = deme->at(i); //get food source's trial variable FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (food->getGenotype(1)); double &trial = flp->realValue[0]; //remember the source if its trial exceeded limit if (trial > limit && trial >maxTrial){ unimproved = food; maxTrial = trial; } } //if there is a food source that exceeded the limit, replace it with a random one if (unimproved != NULL){ FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (unimproved->getGenotype(1)); double &trial = flp->realValue[0]; trial = 0; flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (unimproved->getGenotype(0)); flp->initialize(state); evaluate(unimproved); } return true; }
bool ArtificialBeeColony::onlookerBeesPhase(StateP state, DemeP deme) { // jednostavni odabir, uz selFitPropOp /* for( uint i = 0; i < deme->getSize(); i++ ) { // for each food source // choose a food source depending on its fitness value (better individuals are more likely to be chosen) IndividualP food = selFitOp->select(*deme); createNewFoodSource(food, state, deme); } */ // uz vjerojatnosti, jedinka po jedinka calculateProbabilities(state, deme); int demeSize = deme->getSize(); int i = state->getRandomizer()->getRandomInteger(demeSize); int n = 0; while( n < demeSize) { int fact = i++ % demeSize; IndividualP food = deme->at(fact); if (state->getRandomizer()->getRandomDouble() < probability_[fact]){ n++; createNewFoodSource(food, state, deme); } } return true; }
bool birthPhase(StateP state, DemeP deme, std::vector<IndividualP> &clones) { //number of new antibodies (randomly created) uint birthNumber = deme->getSize() - clones.size(); //if no new antibodies are needed, return (this if part is optional, code works fine w/o it) if (birthNumber == 0) return true; IndividualP newAntibody = copy(deme->at(0)); FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (newAntibody->getGenotype(0)); for (uint i = 0; i<birthNumber; i++){ //create a random antibody flp->initialize(state); evaluate(newAntibody); //reset its age flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (newAntibody->getGenotype(1)); double &age = flp->realValue[0]; age = 0; //add it to the clones vector clones.push_back(copy(newAntibody)); } return true; }
bool employedBeesPhase(StateP state, DemeP deme) { for( uint i = 0; i < deme->getSize(); i++ ) { // for each food source IndividualP food = deme->at(i); createNewFoodSource(food, state, deme); } return true; }
bool RandomSearch :: advanceGeneration(StateP state, DemeP deme) { // initialize and evaluate all individuals for(uint i = 0; i < deme->size(); i++) { deme->at(i)->initialize(state); evaluate(deme->at(i)); } return true; }
bool selectionPhase(StateP state, DemeP deme, std::vector<IndividualP> &clones) { //sort std::sort (clones.begin(), clones.end(), sortPopulationByFitness); //keep best populationSize antibodies ( or all if the number of clones is less than that ), erase the rest if(clones.size() > deme->getSize()) clones.erase (clones.begin()+ deme->getSize(), clones.end()); return true; }
bool cloningPhase(StateP state, DemeP deme, std::vector<IndividualP> &clones) { // storing all antibodies in a vector for( uint i = 0; i < deme->getSize(); i++ ) // for each antibody clones.push_back(deme->at(i)); for( uint i = 0; i < deme->getSize(); i++ ){ // for each antibody in clones vector IndividualP antibody = clones.at(i); // static cloning is fitness independent : : cloning each antibody dup times for (uint j = 0; j < dup; j++) clones.push_back(copy(antibody)); } return true; }
bool onlookerBeesPhase(StateP state, DemeP deme){ for( uint i = 0; i < deme->getSize(); i++ ) { // for each food source //choose a food source depending on it's fitness value ( better individuals are more likely to be chosen) IndividualP food = selFitOp->select(*deme); createNewFoodSource(food, state, deme); } return true; }
bool replacePopulation(StateP state, DemeP deme, std::vector<IndividualP> &clones) { //replace population with the contents of the clones vector for( uint i = 0; i < clones.size(); i++ ) // for each antibody deme->replace(i, clones.at(i)); clones.clear(); return true; }
//! cross donor vectors with population members to create trial vectors void DifferentialEvolution::crossover(DemeP deme, uint index, StateP state) { // get population member and corresponding donor vector FloatingPoint::FloatingPoint* flp1 = (FloatingPoint::FloatingPoint*) (deme->at(index)->getGenotype().get()); int dim = (int) flp1->realValue.size(); FloatingPoint::FloatingPoint* flp2 = (FloatingPoint::FloatingPoint*) donor_vector[index]->getGenotype().get(); // crossover their elements (keep the result in donor_vector) for(uint i = 0; i < flp1->realValue.size(); i++) { if (state->getRandomizer()->getRandomDouble() <= CR_ || i == state->getRandomizer()->getRandomInteger(dim)) { } else { flp2->realValue[i] = flp1->realValue[i]; } } }
bool PSOInheritance::advanceGeneration(StateP state, DemeP deme) { // a) For each particle: // 1) If the fitness value is better than the best fitness value (pBest) in history // 2) Set current value as the new pBest // 3) Put particle in the ranking array using the fitness value // End // b) For the p best particles in the ranking arrayºº // 1) Find, in the particle neighborhood, the particle with the best fitness // 2) Calculate particle velocity according to the velocity equation (1) // 3) Apply the velocity constriction // 4) Update particle position according to the position equation (2) // 5) Apply the position constriction // c) Inherit // Evaluate // 1) Get the fitness value via evaluation or inheritance. // End for( uint i = 0; i < deme->getSize(); i++ ) { // for each particle IndividualP particle = deme->at(i); //Read "i" particle // the whole point of this section is to compare fitness and pbest FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(3)); double &particlePbestFitness = flp->realValue[0]; double fitness = particle->fitness->getValue(); //There is a problem with the particlePbestFitness initialization in this algorithm. The following lines take care of this. //TODO: Find a way to do this in the ¿initialize fuction?. if(state->getGenerationNo()==1){ //std::cout<<"INCIALIZADOOOOOOOOOOOOO!!!!!!!!!!!!!!!!!"<<std::endl; particlePbestFitness=fitness; } else{ //std::cout<<"FITNESS"<<fitness<<std::endl; flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(0)); std::vector< double > &positions = flp->realValue; flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(2)); std::vector< double > &pbestx = flp->realValue; // set particle pbestx-es if( /*iter == 0 ||*/ fitness < particlePbestFitness ) { // minimize error particlePbestFitness = fitness; //Update particle personal fitness // set pbestx-es for( uint j = 0;j<pbestx.size();j++ ) { pbestx[j] = positions[j]; } } } // NOTE store best particle index? //std::cout<<"THE PBEST OF THIS PARTICLE IS!!!!!!!!!!!!:"<<particlePbestFitness<<std::endl; } // b) for( uint i = 0; i < deme->getSize(); i++ ) { // for each particle IndividualP particle = deme->at(i); IndividualP bestParticle = selBestOp->select( *deme ); FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(0)); std::vector< double > &positions = flp->realValue; flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(1)); std::vector< double > &velocities = flp->realValue; flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(2)); std::vector< double > &pbestx = flp->realValue; double R1=rand()/(float)RAND_MAX, R2=rand()/(float)RAND_MAX, vf; int C1=2, C2=2; double weight_up; switch( m_weightType ) { //time variant weight, linear from weight to 0.4 case TIME_VARIANT: weight_up = ( m_weight - 0.4 ) * ( m_maxIter - state->getGenerationNo() ) / m_maxIter + 0.4; break; // constant inertia weight case CONSTANT: default: weight_up = m_weight; break; } // calculate particle velocity according to the velocity equation (1) flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (bestParticle->getGenotype(2)); std::vector< double > &bestParticlesPbestx = flp->realValue; for( uint j = 0; j < velocities.size(); j++ ) { double velocity; velocity = weight_up * velocities[j] + 2 * R1 * (pbestx[j] - positions[j]) + 2 * R2 * (bestParticlesPbestx[j] - positions[j]); if( velocity > m_maxV ) velocity = m_maxV; if( velocity < -m_maxV) velocity = -m_maxV; velocities[j] = velocity; positions[j] += velocities[j]; //Updated positions with velocitites X(t+1)=X(t)+velocities(t); // TODO apply position constriction // check for bounds if(bounded_) { if(positions[j] < lbound_) positions[j] = lbound_; if(positions[j] > ubound_) positions[j] = ubound_; } //std::cout<<"LA VELOCIDAD ES::::"<<velocity<<std::endl; } int proportion=55; if(rand()%100>=proportion){ //Initial PSO inheritance algorithm -> 100%inheritance no evaluations. //determine new particle fitness //Particle best personal fitness // flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(3)); // double &particlePbestFitness = flp->realValue[0]; //Best particle fitness // flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (bestParticle->getGenotype(3)); // double &bestparticlePbestFitness = flp->realValue[0]; // vf=(C1*R1*(particlePbestFitness-particle->fitness->getValue())+C2*R2*(bestparticlePbestFitness-particle->fitness->getValue())) // /(1+C1*R1+C2*R2); // vf=vf+particle->fitness->getValue(); evaluate( particle ); //std::cout<< " Inherited: " << vf<< " -> Evaluated "<< particle->fitness->getValue() <<std::endl ; } else{ //Particle best personal fitness flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (particle->getGenotype(3)); double &particlePbestFitness = flp->realValue[0]; //Best particle fitness flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (bestParticle->getGenotype(3)); double &bestparticlePbestFitness = flp->realValue[0]; //std::cout<<std::endl<<"The EverPersonalBEST of this particle is:"<<particlePbestFitness<<std::endl; //std::cout<<std::endl<<"THE present LEADER(Allbes) of this particle fitness is:"<<bestparticlePbestFitness<<std::endl; //Inheritance based on flight formula std::cout<<"Particle Fitness"<<particle->fitness->getValue()<<" "<<std::endl; //Fitness inheritance vf=(C1*R1*(particlePbestFitness-particle->fitness->getValue())+C2*R2*(bestparticlePbestFitness-particle->fitness->getValue())) /(1+C1*R1+C2*R2); particle->fitness->setValue(vf+particle->fitness->getValue()); std::cout<< " Inherited: " << particle->fitness->getValue()<< " "<< std::endl ; } } //std::cout<<std::endl<<"THE NUMBER OF THIS GENERATION IS:"<<state->getGenerationNo() <<std::endl; std::cout<<std::endl<<"THE NUMBER OF EVALUATIONS ARE:"<<state->getEvaluations() <<std::endl; std::cout<<std::endl<<"THE TIME TAKEN TO DO THIS IS:"<<state->getElapsedTime() <<std::endl; //*******************FILE OUTPUT FOR DEBUGGING***********************************************// IndividualP bestParticle = selBestOp->select( *deme ); FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (bestParticle->getGenotype(3)); double &bestparticlePbestFitness = flp->realValue[0]; std::ofstream myfile1; myfile1.open("FitnessvsEvaluations.txt", std::ios_base::app); if (myfile1.is_open()){ myfile1<<bestparticlePbestFitness<<" "; myfile1<<state->getEvaluations()<<std::endl; } //*******************************************************************************************// return true; }