SparseMatrix NeighborhoodBuilder::build(DenseMatrix mat) const { /* * This matrix contains the k_ best neighbors for every vertex. * The candidates are sorted in ascending order. * * The matrix is updated for entry as correlations are computed. * This allows us to cut the computation time in half! * * We allocate twice the (worst-case) storage needed, as we have * to symmetrize the matrix afterwards. Alternatively we could * resize later, which might lead to a full copy. */ std::vector<T> entries(2 * k_ * mat.rows()); std::vector<DenseMatrix::value_type> sd(mat.rows()); DenseMatrix::Vector mu = mat.matrix().rowwise().mean(); for(unsigned int i = 0; i < mat.rows(); ++i) { mat.row(i) = mat.row(i).array() - mu[i]; sd[i] = mat.row(i).norm(); } for(unsigned int i = 0; i < mat.rows(); ++i) { for(unsigned int j = i + 1; j < mat.rows(); ++j) { double cov = mat.row(i).dot(mat.row(j)); cov = fabs(cov) / (sd[i] * sd[j]); // Insert into the entries vector insert_(T(i, j, cov), entries.begin() + i * k_); insert_(T(i, j, cov), entries.begin() + j * k_); } } return buildMatrix_(entries, mat); }
EmbeddingResult project(const ProjectionResult& projection_result, RandomAccessIterator begin, RandomAccessIterator end, FeatureVectorCallback callback, unsigned int dimension) { timed_context context("Data projection"); DenseVector current_vector(dimension); const DenseSymmetricMatrix& projection_matrix = projection_result.first; DenseMatrix embedding = DenseMatrix::Zero((end-begin),projection_matrix.cols()); for (RandomAccessIterator iter=begin; iter!=end; ++iter) { callback(*iter,current_vector); embedding.row(iter-begin) = projection_matrix.transpose()*current_vector; } return EmbeddingResult(embedding,DenseVector()); }
DenseMatrix project(const DenseMatrix& projection_matrix, const DenseVector& mean_vector, RandomAccessIterator begin, RandomAccessIterator end, FeatureVectorCallback callback, IndexType dimension) { timed_context context("Data projection"); DenseVector current_vector(dimension); DenseVector current_vector_subtracted_mean(dimension); DenseMatrix embedding = DenseMatrix::Zero((end-begin),projection_matrix.cols()); for (RandomAccessIterator iter=begin; iter!=end; ++iter) { callback(*iter,current_vector); current_vector_subtracted_mean = current_vector - mean_vector; embedding.row(iter-begin) = projection_matrix.transpose()*current_vector_subtracted_mean; } return embedding; }
template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref) { const Index rows = ref.rows(); const Index cols = ref.cols(); const Index inner = ref.innerSize(); const Index outer = ref.outerSize(); typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::StorageIndex StorageIndex; double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; typedef Matrix<Scalar,1,Dynamic> RowDenseVector; typedef SparseVector<Scalar> SparseVectorType; Scalar s1 = internal::random<Scalar>(); { SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); initSparse<Scalar>(density, refMat, m); VERIFY_IS_APPROX(m, refMat); // test InnerIterators and Block expressions for (int t=0; t<10; ++t) { Index j = internal::random<Index>(0,cols-2); Index i = internal::random<Index>(0,rows-2); Index w = internal::random<Index>(1,cols-j); Index h = internal::random<Index>(1,rows-i); VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); for(Index c=0; c<w; c++) { VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); for(Index r=0; r<h; r++) { VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); } } for(Index r=0; r<h; r++) { VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); for(Index c=0; c<w; c++) { VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); } } VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w)); VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h)); for(Index r=0; r<h; r++) { VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r)); VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r)); for(Index c=0; c<w; c++) { VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c)); VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); if(m.middleCols(j,w).coeff(r,c) != Scalar(0)) { VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c)); } if(m.middleRows(i,h).coeff(r,c) != Scalar(0)) { VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); } } } for(Index c=0; c<w; c++) { VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c)); VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c)); } } for(Index c=0; c<cols; c++) { VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); } for(Index r=0; r<rows; r++) { VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); } } // test innerVector() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); Index j0 = internal::random<Index>(0,outer-1); Index j1 = internal::random<Index>(0,outer-1); Index r0 = internal::random<Index>(0,rows-1); Index c0 = internal::random<Index>(0,cols-1); VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0)); VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1)); m2.innerVector(j0) *= Scalar(2); innervec(refMat2,j0) *= Scalar(2); VERIFY_IS_APPROX(m2, refMat2); m2.row(r0) *= Scalar(3); refMat2.row(r0) *= Scalar(3); VERIFY_IS_APPROX(m2, refMat2); m2.col(c0) *= Scalar(4); refMat2.col(c0) *= Scalar(4); VERIFY_IS_APPROX(m2, refMat2); m2.row(r0) /= Scalar(3); refMat2.row(r0) /= Scalar(3); VERIFY_IS_APPROX(m2, refMat2); m2.col(c0) /= Scalar(4); refMat2.col(c0) /= Scalar(4); VERIFY_IS_APPROX(m2, refMat2); SparseVectorType v1; VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4); VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4); SparseMatrixType m3(rows,cols); m3.reserve(VectorXi::Constant(outer,int(inner/2))); for(Index j=0; j<outer; ++j) for(Index k=0; k<(std::min)(j,inner); ++k) m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1); for(Index j=0; j<(std::min)(outer, inner); ++j) { VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); if(j>0) VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); } m3.makeCompressed(); for(Index j=0; j<(std::min)(outer, inner); ++j) { VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); if(j>0) VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); } VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros()); // m2.innerVector(j0) = 2*m2.innerVector(j1); // refMat2.col(j0) = 2*refMat2.col(j1); // VERIFY_IS_APPROX(m2, refMat2); } // test innerVectors() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); if(internal::random<float>(0,1)>0.5f) m2.makeCompressed(); Index j0 = internal::random<Index>(0,outer-2); Index j1 = internal::random<Index>(0,outer-2); Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); else VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); else VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); VERIFY_IS_APPROX(m2, refMat2); VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros()); m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); if(SparseMatrixType::IsRowMajor) refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); else refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); VERIFY_IS_APPROX(m2, refMat2); } // test generic blocks { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); Index j0 = internal::random<Index>(0,outer-2); Index j1 = internal::random<Index>(0,outer-2); Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); else VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); else VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); Index i = internal::random<Index>(0,m2.outerSize()-1); if(SparseMatrixType::IsRowMajor) { m2.innerVector(i) = m2.innerVector(i) * s1; refMat2.row(i) = refMat2.row(i) * s1; VERIFY_IS_APPROX(m2,refMat2); } else { m2.innerVector(i) = m2.innerVector(i) * s1; refMat2.col(i) = refMat2.col(i) * s1; VERIFY_IS_APPROX(m2,refMat2); } Index r0 = internal::random<Index>(0,rows-2); Index c0 = internal::random<Index>(0,cols-2); Index r1 = internal::random<Index>(1,rows-r0); Index c1 = internal::random<Index>(1,cols-c0); VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0)); VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0)); VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0)); VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0)); VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1)); VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1)); if(m2.nonZeros()>0) { VERIFY_IS_APPROX(m2, refMat2); SparseMatrixType m3(rows, cols); DenseMatrix refMat3(rows, cols); refMat3.setZero(); Index n = internal::random<Index>(1,10); for(Index k=0; k<n; ++k) { Index o1 = internal::random<Index>(0,outer-1); Index o2 = internal::random<Index>(0,outer-1); if(SparseMatrixType::IsRowMajor) { m3.innerVector(o1) = m2.row(o2); refMat3.row(o1) = refMat2.row(o2); } else { m3.innerVector(o1) = m2.col(o2); refMat3.col(o1) = refMat2.col(o2); } if(internal::random<bool>()) m3.makeCompressed(); } if(m3.nonZeros()>0) VERIFY_IS_APPROX(m3, refMat3); } } }
static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) { int r = internal::random(0,m2.rows()-1); int c1 = internal::random(0,m2.cols()-1); VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose()); VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r)); }