void DenseMatrix<T>::vector_mult_add (DenseVector<T>& dest, const T factor, const DenseVector<T>& arg) const { // Short-circuit if the matrix is empty if(this->m() == 0) { dest.resize(0); return; } if (this->use_blas_lapack) this->_matvec_blas(factor, 1., dest, arg); else { DenseVector<T> temp(arg.size()); this->vector_mult(temp, arg); dest.add(factor, temp); } }
// Stiffness and RHS assembly // Equation references are from Samanta and Zabaras, 2005 void EnergySystem :: assemble(){ // GENERAL VARIABLES // Get a constant reference to the mesh object. const MeshBase& mesh = this->get_mesh(); // The dimension that we are running const unsigned int dim = this->ndim(); // FEM THERMODYNAMIC RELATIONSHIPS (ThermoEq Class) // Determine the FEM type (should be same for all ThermoEq variables) FEType fe_type_thermo = thermo->variable_type(0); // Build FE object; accessed via a pointer AutoPtr<FEBase> fe_thermo(FEBase::build(dim, fe_type_thermo)); // Setup a quadrature rule QGauss qrule_thermo(dim, fe_type_thermo.default_quadrature_order()); // Link FE and Quadrature fe_thermo->attach_quadrature_rule(&qrule_thermo); // References to shape functions and derivatives const vector<std::vector<Real> >& N_thermo = fe_thermo->get_phi(); const vector<std::vector<RealGradient> >& B_thermo = fe_thermo->get_dphi(); // Setup a DOF map const DofMap& dof_map_thermo = thermo->get_dof_map(); // FEM MOMENTUM EQUATION // Determine the FEM type FEType fe_type_momentum = momentum->variable_type(0); // Build FE object; accessed via a pointer AutoPtr<FEBase> fe_momentum(FEBase::build(dim, fe_type_momentum)); // Setup a quadrature rule QGauss qrule_momentum(dim, fe_type_momentum.default_quadrature_order()); // Link FE and Quadrature fe_momentum->attach_quadrature_rule(&qrule_momentum); // References to shape functions and derivatives const vector<std::vector<Real> >& N_momentum = fe_momentum->get_phi(); // Setup a DOF map const DofMap& dof_map_momentum = momentum->get_dof_map(); // FEM ENERGY EQ. RELATIONSHIPS // Get a constant reference to the Finite Element type // for the first (and only) variable in the system. FEType fe_type = this->variable_type(0); // Build a Finite Element object of the specified type AutoPtr<FEBase> fe (FEBase::build(dim, fe_type)); AutoPtr<FEBase> fe_face (FEBase::build(dim, fe_type)); // A Gauss quadrature rule for numerical integration. // Let the \p FEType object decide what order rule is appropriate. QGauss qrule (dim, fe_type.default_quadrature_order()); QGauss qface (dim-1, fe_type.default_quadrature_order()); // Tell the finite element object to use our quadrature rule. fe->attach_quadrature_rule(&qrule); fe_face->attach_quadrature_rule(&qface); // Here we define some references to cell-specific data that // will be used to assemble the linear system. We will start // with the element Jacobian * quadrature weight at each integration point. const vector<Real>& JxW = fe->get_JxW(); const vector<Real>& JxW_face = fe_face->get_JxW(); // The element shape functions evaluated at the quadrature points. const vector<std::vector<Real> >& N = fe->get_phi(); const vector<std::vector<Real> >& N_face = fe_face->get_phi(); // Element shape function gradients evaluated at quadrature points const vector<std::vector<RealGradient> >& B = fe->get_dphi(); // The XY locations of the quadrature points used for face integration const vector<Point>& qface_points = fe_face->get_xyz(); // A reference to the \p DofMap objects const DofMap& dof_map = this->get_dof_map(); // this system // DEFINE VECTOR AND MATRIX VARIABLES // Define data structures to contain the element matrix // and right-hand-side vector contribution (Eq. 107) DenseMatrix<Number> Me; // [\hat{M} + \hat{M}_{\delta}] DenseMatrix<Number> Ne; // [\hat{N} + \hat{N}_{\delta}] DenseMatrix<Number> Ke; // [\hat{K} + \hat{K}_{\delta}] DenseVector<Number> Fe; // [\hat{F} + \hat{F}_{\delta}] //DenseVector<Number> Fe_old; // element force vector (previous time) DenseVector<Number> h; // element enthalpy vector (previous time) DenseVector<Number> h_dot; //DenseVector<Number> delta_h_dot; DenseMatrix<Number> Mstar; // general time integration stiffness matrix (Eq. 125) DenseVector<Number> R; // general time integration force vector (Eq. 126) // Storage vectors for the degree of freedom indices std::vector<unsigned int> dof_indices; // this system (h) // std::vector<unsigned int> dof_indices_hdot; // std::vector<unsigned int> dof_indices_deltahdot; std::vector<unsigned int> dof_indices_velocity; // this system std::vector<unsigned int> dof_indices_rho; // ThermoEq density std::vector<unsigned int> dof_indices_tmp; // ThermoEq temperature std::vector<unsigned int> dof_indices_f; // ThermoEq liquid fraction std::vector<unsigned int> dof_indices_eps; // ThermoEq epsilon // Define the necessary constants const Number gamma = get_constant<Number>("gamma"); const Number dt = get_constant<Number>("dt"); // time step Real time = this->time; // current time const Number ks = thermo->get_constant<Number>("conductivity_solid"); const Number kf = thermo->get_constant<Number>("conductivity_fluid"); const Number cs = thermo->get_constant<Number>("specific_heat_solid"); const Number cf = thermo->get_constant<Number>("specific_heat_fluid"); const Number Te = thermo->get_constant<Number>("eutectic_temperature"); const Number hf = thermo->get_constant<Number>("latent_heat"); // Index of density variable in ThermoEq system const unsigned int rho_idx = thermo->variable_number("density"); const unsigned int tmp_idx = thermo->variable_number("temperature"); const unsigned int f_idx = thermo->variable_number("liquid_mass_fraction"); const unsigned int eps_idx = thermo->variable_number("epsilon"); // Loop over all the elements in the mesh that are on local processor MeshBase::const_element_iterator el = mesh.active_local_elements_begin(); const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end(); for ( ; el != end_el; ++el){ // Pointer to the element current element const Elem* elem = *el; // Get the degree of freedom indices for the current element dof_map.dof_indices(elem, dof_indices, 0); //dof_map.dof_indices(elem, dof_indices_hdot, 1); //dof_map.dof_indices(elem, dof_indices_deltahdot, 2); dof_map_momentum.dof_indices(elem, dof_indices_velocity); dof_map_thermo.dof_indices(elem, dof_indices_rho, rho_idx); dof_map_thermo.dof_indices(elem, dof_indices_tmp, tmp_idx); dof_map_thermo.dof_indices(elem, dof_indices_f, f_idx); dof_map_thermo.dof_indices(elem, dof_indices_eps, eps_idx); // Compute the element-specific data for the current element fe->reinit (elem); fe_thermo->reinit(elem); fe_momentum->reinit(elem); // Zero the element matrices and vectors Me.resize (dof_indices.size(), dof_indices.size()); // [\hat{M} + \hat{M}_{\delta}] Ne.resize (dof_indices.size(), dof_indices.size()); // Ke.resize (dof_indices.size(), dof_indices.size()); Fe.resize (dof_indices.size()); // Extract a vector of quadrature x,y,z coordinates const vector<Point> qp_vec = fe->get_xyz(); // Compute the element length, h Number elem_length = thermo->element_length(elem); // Compute the RHS and mass and stiffness matrix for this element (Me) for (unsigned int qp = 0; qp < qrule.n_points(); qp++){ // Get the velocity vector at this point (old value) VectorValue<Number> v; for (unsigned int i = 0; i < N_momentum.size(); i++){ for (unsigned int j = 0; j < dim; j++){ v(j) += N_momentum[i][qp] * momentum->old_solution(dof_indices_velocity[2*i+j]); } } // Compute ThermoEq variables; must be mapped from node to quadrature points Number T = 0; Gradient grad_T; Number f = 0; Gradient grad_f; Number rho = 0; Number rho_old = 0; Number eps = 0; for (unsigned int i = 0; i < N_thermo.size(); i++){ T += N_thermo[i][qp] * thermo->current_solution(dof_indices_tmp[i]); grad_T.add_scaled(B_thermo[i][qp], thermo->current_solution(dof_indices_tmp[i])); f += N_thermo[i][qp] * thermo->current_solution(dof_indices_f[i]); grad_f.add_scaled(B_thermo[i][qp], thermo->current_solution(dof_indices_f[i])); rho += N_thermo[i][qp] * thermo->current_solution(dof_indices_rho[i]); rho_old += N_thermo[i][qp] * thermo->old_solution(dof_indices_rho[i]); eps += N_thermo[i][qp] * thermo->current_solution(dof_indices_eps[i]); } // Compute EnergySystem variables Gradient grad_h; for (unsigned int i = 0; i < B.size(); i++){ grad_h.add_scaled(B[i][qp], this->current_solution(dof_indices[i])); } // Compute T_{,k}^h v_k^h and f_{,k} v_k^h summation terms for F Number Tv = 0; Number fv = 0; for (unsigned int i = 0; i < dim; i++){ Tv += grad_T(i) * v(i); fv += grad_f(i) * v(i); } // Compute the time derivative of density const Number drho_dt = (rho - rho_old)/dt; // Compute alpha term of Eq. 69 const Number alpha = this->alpha(grad_T, grad_h, f); // Extract tau_1 stabilization term const Number tau_1 = thermo->tau_1(qp_vec[qp], elem_length); // Loop through the components and construct matrices for (unsigned int i = 0; i < N.size(); i++){ // Compute advective stabilization term (Eq. A, p. 1777) const Number d = tau_1 * v * B[i][qp] / f - tau_1 * 1/rho * drho_dt * (1-f)/f * N[i][qp]; // Force vector, Eq. 77 Number F1 = JxW[qp] * (N[i][qp] + d) * rho * (1 - f) * (cf - cs) * Tv; Number F2 = JxW[qp] * (N[i][qp] + d) * rho * fv * ((cf - cs) * (T - Te) + hf); Number F3 = JxW[qp] * (N[i][qp] + d) * drho_dt * (1 - f) * ((cf - cs) * (T - Te) + hf); Fe(i) += F1 + F2 + F3; // Build the stiffness matrices for (unsigned int j = 0; j < N.size(); j++){ // Mass matrix, Eq. 108 Me(i,j) += JxW[qp] * rho * ((N[i][qp] + d) * N[j][qp]); // Stiffness matrix one, Ne, Eq. 109 Ne(i,j) += JxW[qp] * rho * ((N[i][qp] + d) * (v * B[j][qp])); // Stiffness matrix two, Ke, Eq. 110 Ke(i,j) += JxW[qp]*((eps*kf + (1 - eps)*ks) * alpha * B[i][qp] * B[j][qp]); } } } printf("Me:\n"); Me.print(std::cout); printf("\nNe:\n"); Ne.print(std::cout); printf("\nKe:\n"); Ke.print(std::cout); printf("\nFe:\n"); Fe.print(std::cout); h.resize(dof_indices.size()); h_dot.resize(dof_indices.size()); // delta_h_dot.resize(dof_indices_deltahdot.size()); for (unsigned int i = 0; i < dof_indices.size(); i++){ h(i) = this->old_solution(dof_indices[i]); h_dot(i) = this->get_vector("h_dot")(dof_indices[i]); // delta_h_dot(i) = this->old_solution(dof_indices_deltahdot[i]); } this->get_matrix("M").add_matrix(Me, dof_indices); this->get_matrix("N").add_matrix(Ne, dof_indices); this->get_matrix("K").add_matrix(Ke, dof_indices); this->get_vector("F").add_vector(Fe, dof_indices); Mstar.resize(dof_indices.size(), dof_indices.size()); R.resize(dof_indices.size()); // Me + gamma*dt*(Ke + Ne); Mstar.add(1,Me); Mstar.add(gamma*dt,Ke); Mstar.add(gamma*dt,Ne); this->matrix->add_matrix(Mstar, dof_indices); R.add(1,Fe); DenseVector<Number> a(dof_indices.size()); Me.vector_mult(a, h_dot); R.add(-1, a); DenseMatrix<Number> B(dof_indices.size(), dof_indices.size()); DenseVector<Number> b(dof_indices.size()); B.add(1,Ne); B.add(1,Ke); B.vector_mult(b, h); R.add(-1,b); this->rhs->add_vector(R, dof_indices); /* // BOUNDARY CONDITIONS // Loop through each side of the element for applying boundary conditions for (unsigned int s = 0; s < elem->n_sides(); s++){ // Only consider the side if it does not have a neighbor if (elem->neighbor(s) == NULL){ // Pointer to current element side const AutoPtr<Elem> side = elem->side(s); // Boundary ID of the current side int boundary_id = (mesh.boundary_info)->boundary_id(elem, s); // Get index of the boundary class with the same id // this vector is empty if there is no match and only // contains a single value if there is a match std::vector<int> idx = get_boundary_index(boundary_id); // Continue of there is a match if(!idx.empty()){ // Compute the shape function values on the element face fe_face->reinit(elem, s); // Create a shared pointer to the boundary class boost::shared_ptr<HeatEqBoundaryBase> ptr = bc_ptrs[idx[0]]; // Determine the type of boundary considered std::string type = ptr->type; // Loop through quadrature points for (unsigned int qp = 0; qp < qface.n_points(); qp++){ // DIRICHLET (libMesh version; handled at initialization) if(type.compare("dirichlet") == 0){ // The dirichlet conditions are handled at initlization // but I don't want to throw an error if they are // encountered, so just do nothing // NEUMANN condition } else if(type.compare("neumann") == 0){ // Current and past flux values const Number q = ptr->q(qface_points[qp], time); const Number q_old = ptr->q(qface_points[qp], time - dt); // Add values to Fe for (unsigned int i = 0; i < psi.size(); i++){ Fe(i) += JxW_face[qp] * q * psi[i][qp]; Fe_old(i) += JxW_face[qp] * q_old * psi[i][qp]; } // CONVECTION boundary } else if(type.compare("convection") == 0){ // Current and past h and T_inf const Number h = ptr->h(qface_points[qp], time); const Number h_old = ptr->h(qface_points[qp], time - dt); const Number Tinf = ptr->Tinf(qface_points[qp], time); const Number Tinf_old = ptr->Tinf(qface_points[qp], time - dt); // Add values to Ke and Fe for (unsigned int i = 0; i < psi.size(); i++){ Fe(i) += (1) * JxW_face[qp] * h * Tinf * psi[i][qp]; Fe_old(i) += (1) * JxW_face[qp] * h_old * Tinf_old * psi[i][qp]; for (unsigned int j = 0; j < psi.size(); j++){ Ke(i,j) += JxW_face[qp] * psi[i][qp] * h * psi[j][qp]; } } // Un-registerd type } else { printf("WARNING! The boundary type, %s, was not understood!\n", type.c_str()); } // (end) type.compare(...) statemenst } //(end) for (int qp = 0; qp < qface.n_points(); qp++) } // (end) if(!idx.empty) } // (end) if (elem->neighbor(s) == NULL){ } // (end) for (int s = 0; s < elem->n_sides(); s++) // Zero the pervious time-step temperature vector for this element u_old.resize(dof_indices.size()); // Gather the temperatures at the nodes for (unsigned int i = 0; i < psi.size(); i++){ u_old(i) = this->old_solution(dof_indices[i]); } // Build K_hat and F_hat (appends existing) K_hat.resize(dof_indices.size(), dof_indices.size()); F_hat.resize(dof_indices.size()); build_stiffness_and_rhs(K_hat, F_hat, Me, Ke, Fe_old, Fe, u_old, dt, theta); // Applies the dirichlet constraints to K_hat and F_hat dof_map.heterogenously_constrain_element_matrix_and_vector(K_hat, F_hat, dof_indices); // Apply the local components to the global K and F this->matrix->add_matrix(K_hat, dof_indices); this->rhs->add_vector(F_hat, dof_indices); */ } // (end) for ( ; el != end_el; ++el) //update_rhs(); } // (end) assemble()