Ptr<Layer> createLayerFromCaffe<EltwiseLayer>(LayerParams& params) { EltwiseLayer::EltwiseOp op = EltwiseLayer::SUM; if (params.has("operation")) { String operation = params.get<String>("operation").toLowerCase(); if (operation == "prod") op = EltwiseLayer::PROD; else if (operation == "sum") op = EltwiseLayer::SUM; else if (operation == "max") op = EltwiseLayer::MAX; else CV_Error(cv::Error::StsBadArg, "Unknown operaticon type \"" + operation + "\""); } std::vector<int> coeffs; if (params.has("coeff")) { DictValue paramCoeff = params.get("coeff"); coeffs.resize(paramCoeff.size(), 1); for (int i = 0; i < paramCoeff.size(); i++) { coeffs[i] = paramCoeff.get<int>(i); } } return Ptr<Layer>(EltwiseLayer::create(op, coeffs)); }
static void getParams(const std::string& name, const LayerParams ¶ms, std::vector<float>* values) { DictValue dict; if (getParameterDict(params, name, dict)) { values->resize(dict.size()); for (int i = 0; i < dict.size(); ++i) { (*values)[i] = dict.get<float>(i); } } else values->clear(); }
void getAspectRatios(const LayerParams ¶ms) { DictValue aspectRatioParameter; bool aspectRatioRetieved = getParameterDict(params, "aspect_ratio", aspectRatioParameter); if (!aspectRatioRetieved) return; for (int i = 0; i < aspectRatioParameter.size(); ++i) { float aspectRatio = aspectRatioParameter.get<float>(i); bool alreadyExists = false; for (size_t j = 0; j < _aspectRatios.size(); ++j) { if (fabs(aspectRatio - _aspectRatios[j]) < 1e-6) { alreadyExists = true; break; } } if (!alreadyExists) { _aspectRatios.push_back(aspectRatio); if (_flip) { _aspectRatios.push_back(1./aspectRatio); } } } }
void getVariance(const LayerParams ¶ms) { DictValue varianceParameter; bool varianceParameterRetrieved = getParameterDict(params, "variance", varianceParameter); CV_Assert(varianceParameterRetrieved); int varianceSize = varianceParameter.size(); if (varianceSize > 1) { // Must and only provide 4 variance. CV_Assert(varianceSize == 4); for (int i = 0; i < varianceSize; ++i) { float variance = varianceParameter.get<float>(i); CV_Assert(variance > 0); _variance.push_back(variance); } } else { if (varianceSize == 1) { float variance = varianceParameter.get<float>(0); CV_Assert(variance > 0); _variance.push_back(variance); } else { // Set default to 0.1. _variance.push_back(0.1f); } } }
Ptr<Layer> createLayerFromCaffe<CropLayer>(LayerParams& params) { int start_axis = params.get<int>("axis", 2); DictValue *paramOffset = params.ptr("offset"); std::vector<int> offset; if (paramOffset) { for (int i = 0; i < paramOffset->size(); i++) offset.push_back(paramOffset->get<int>(i)); } return Ptr<Layer>(CropLayer::create(start_axis, offset)); }
void ONNXImporter::populateNet(Net dstNet) { CV_Assert(model_proto.has_graph()); opencv_onnx::GraphProto graph_proto = model_proto.graph(); std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto); // List of internal blobs shapes. std::map<std::string, MatShape> outShapes; // Add all the inputs shapes. It includes as constant blobs as network's inputs shapes. for (int i = 0; i < graph_proto.input_size(); ++i) { opencv_onnx::ValueInfoProto valueInfoProto = graph_proto.input(i); CV_Assert(valueInfoProto.has_type()); opencv_onnx::TypeProto typeProto = valueInfoProto.type(); CV_Assert(typeProto.has_tensor_type()); opencv_onnx::TypeProto::Tensor tensor = typeProto.tensor_type(); CV_Assert(tensor.has_shape()); opencv_onnx::TensorShapeProto tensorShape = tensor.shape(); MatShape inpShape(tensorShape.dim_size()); for (int j = 0; j < inpShape.size(); ++j) { inpShape[j] = tensorShape.dim(j).dim_value(); } outShapes[valueInfoProto.name()] = inpShape; } std::string framework_name; if (model_proto.has_producer_name()) { framework_name = model_proto.producer_name(); } // create map with network inputs (without const blobs) std::map<std::string, LayerInfo> layer_id; std::map<std::string, LayerInfo>::iterator layerId; std::map<std::string, MatShape>::iterator shapeIt; // fill map: push layer name, layer id and output id std::vector<String> netInputs; for (int j = 0; j < graph_proto.input_size(); j++) { const std::string& name = graph_proto.input(j).name(); if (constBlobs.find(name) == constBlobs.end()) { netInputs.push_back(name); layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1))); } } dstNet.setInputsNames(netInputs); int layersSize = graph_proto.node_size(); LayerParams layerParams; opencv_onnx::NodeProto node_proto; for(int li = 0; li < layersSize; li++) { node_proto = graph_proto.node(li); layerParams = getLayerParams(node_proto); CV_Assert(node_proto.output_size() >= 1); layerParams.name = node_proto.output(0); std::string layer_type = node_proto.op_type(); layerParams.type = layer_type; if (layer_type == "MaxPool") { layerParams.type = "Pooling"; layerParams.set("pool", "MAX"); layerParams.set("ceil_mode", isCeilMode(layerParams)); } else if (layer_type == "AveragePool") { layerParams.type = "Pooling"; layerParams.set("pool", "AVE"); layerParams.set("ceil_mode", isCeilMode(layerParams)); layerParams.set("ave_pool_padded_area", framework_name == "pytorch"); } else if (layer_type == "GlobalAveragePool") { layerParams.type = "Pooling"; layerParams.set("pool", "AVE"); layerParams.set("global_pooling", true); } else if (layer_type == "Add" || layer_type == "Sum") { if (layer_id.find(node_proto.input(1)) == layer_id.end()) { Mat blob = getBlob(node_proto, constBlobs, 1); blob = blob.reshape(1, 1); if (blob.total() == 1) { layerParams.type = "Power"; layerParams.set("shift", blob.at<float>(0)); } else { layerParams.type = "Scale"; layerParams.set("bias_term", true); layerParams.blobs.push_back(blob); } } else { layerParams.type = "Eltwise"; } } else if (layer_type == "Sub") { Mat blob = getBlob(node_proto, constBlobs, 1); if (blob.total() == 1) { layerParams.type = "Power"; layerParams.set("shift", -blob.at<float>(0)); } else { layerParams.type = "Scale"; layerParams.set("has_bias", true); layerParams.blobs.push_back(-1.0f * blob.reshape(1, 1)); } } else if (layer_type == "Div") { Mat blob = getBlob(node_proto, constBlobs, 1); CV_Assert_N(blob.type() == CV_32F, blob.total()); if (blob.total() == 1) { layerParams.set("scale", 1.0f / blob.at<float>(0)); layerParams.type = "Power"; } else { layerParams.type = "Scale"; divide(1.0, blob, blob); layerParams.blobs.push_back(blob); layerParams.set("bias_term", false); } } else if (layer_type == "Constant") { CV_Assert(node_proto.input_size() == 0); CV_Assert(layerParams.blobs.size() == 1); constBlobs.insert(std::make_pair(layerParams.name, layerParams.blobs[0])); continue; } else if (layer_type == "ImageScaler") { const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f; layerParams.erase("scale"); if (layerParams.has("bias")) { layerParams.type = "Scale"; layerParams.blobs.push_back( Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale)); layerParams.set("bias_term", true); Mat bias(1, layerParams.get("bias").size(), CV_32FC1); for (int j = 0; j < bias.total(); j++) { bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j); } layerParams.blobs.push_back(bias); layerParams.erase("bias"); } else { layerParams.set("scale", scale); layerParams.type = "Power"; } } else if (layer_type == "LeakyRelu") { layerParams.type = "ReLU"; replaceLayerParam(layerParams, "alpha", "negative_slope"); } else if (layer_type == "LRN") { replaceLayerParam(layerParams, "size", "local_size"); } else if (layer_type == "BatchNormalization") { if (node_proto.input_size() != 5) CV_Error(Error::StsNotImplemented, "Expected input, scale, bias, mean and var"); layerParams.type = "BatchNorm"; replaceLayerParam(layerParams, "epsilon", "eps"); replaceLayerParam(layerParams, "spatial", "use_global_stats"); Mat meanData = getBlob(node_proto, constBlobs, 3); Mat stdData = getBlob(node_proto, constBlobs, 4); layerParams.blobs.push_back(meanData); layerParams.blobs.push_back(stdData); if (!node_proto.input(1).empty()) { layerParams.set("has_weight", true); layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 1)); // weightData } else { layerParams.set("has_weight", false); } if (!node_proto.input(2).empty()) { layerParams.set("has_bias", true); layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 2)); // biasData } else { layerParams.set("has_bias", false); } } else if (layer_type == "Gemm") { CV_Assert(node_proto.input_size() >= 2); layerParams.type = "InnerProduct"; Mat weights = getBlob(node_proto, constBlobs, 1); int ind_num_out = 0; if (layerParams.has("transB") && !layerParams.get<int>("transB")) { transpose(weights, weights); ind_num_out = 1; } layerParams.blobs.push_back(weights); if (node_proto.input_size() == 3) { Mat bias = getBlob(node_proto, constBlobs, 2); layerParams.blobs.push_back(bias); } layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]); layerParams.set("bias_term", node_proto.input_size() == 3); } else if (layer_type == "MatMul") { CV_Assert(node_proto.input_size() == 2); layerParams.type = "InnerProduct"; Mat blob = getBlob(node_proto, constBlobs, 1); layerParams.blobs.push_back(blob.t()); layerParams.set("bias_term", false); layerParams.set("num_output", layerParams.blobs[0].size[0]); } else if (layer_type == "Mul") { CV_Assert(node_proto.input_size() == 2); if (layer_id.find(node_proto.input(1)) == layer_id.end()) { Mat blob = getBlob(node_proto, constBlobs, 1); blob = blob.reshape(1, 1); if (blob.total() == 1) { layerParams.set("scale", blob.at<float>(0)); layerParams.type = "Power"; } else { layerParams.blobs.push_back(blob); layerParams.type = "Scale"; } } else { layerParams.type = "Eltwise"; layerParams.set("operation", "prod"); } } else if (layer_type == "Conv") { CV_Assert(node_proto.input_size() >= 2); layerParams.type = "Convolution"; for (int j = 1; j < node_proto.input_size(); j++) { layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); } layerParams.set("num_output", layerParams.blobs[0].size[0]); layerParams.set("bias_term", node_proto.input_size() == 3); } else if (layer_type == "ConvTranspose") { CV_Assert(node_proto.input_size() >= 2); layerParams.type = "Deconvolution"; for (int j = 1; j < node_proto.input_size(); j++) { layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); } layerParams.set("num_output", layerParams.blobs[0].size[1]); layerParams.set("bias_term", node_proto.input_size() == 3); } else if (layer_type == "Transpose") { layerParams.type = "Permute"; replaceLayerParam(layerParams, "perm", "order"); } else if (layer_type == "Unsqueeze") { CV_Assert(node_proto.input_size() == 1); Mat input = getBlob(node_proto, constBlobs, 0); DictValue axes = layerParams.get("axes"); std::vector<int> dims; for (int j = 0; j < input.dims; j++) { dims.push_back(input.size[j]); } CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size()); for (int j = 0; j < axes.size(); j++) { dims.insert(dims.begin() + axes.getIntValue(j), 1); } Mat out = input.reshape(0, dims); constBlobs.insert(std::make_pair(layerParams.name, out)); continue; } else if (layer_type == "Reshape") { CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape")); if (node_proto.input_size() == 2) { Mat blob = getBlob(node_proto, constBlobs, 1); CV_Assert(blob.type() == CV_32SC1); if (layer_id.find(node_proto.input(0)) == layer_id.end()) { Mat input = getBlob(node_proto, constBlobs, 0); Mat out = input.reshape(0, static_cast<std::vector<int> >(blob)); constBlobs.insert(std::make_pair(layerParams.name, out)); continue; } layerParams.set("dim", DictValue::arrayInt<int*>( blob.ptr<int>(), blob.total() )); } else { DictValue shape = layerParams.get("shape"); std::vector<int> dim; for (int j = 0; j < shape.size(); j++) { dim.push_back(shape.getIntValue(j)); } if (layer_id.find(node_proto.input(0)) == layer_id.end()) { Mat input = getBlob(node_proto, constBlobs, 0); Mat out = input.reshape(0, dim); constBlobs.insert(std::make_pair(layerParams.name, out)); continue; } replaceLayerParam(layerParams, "shape", "dim"); } } else if (layer_type == "Pad") { layerParams.type = "Padding"; } else if (layer_type == "Shape") { CV_Assert(node_proto.input_size() == 1); shapeIt = outShapes.find(node_proto.input(0)); CV_Assert(shapeIt != outShapes.end()); MatShape inpShape = shapeIt->second; Mat shapeMat(inpShape.size(), 1, CV_32S); for (int j = 0; j < inpShape.size(); ++j) shapeMat.at<int>(j) = inpShape[j]; shapeMat.dims = 1; constBlobs.insert(std::make_pair(layerParams.name, shapeMat)); continue; } else if (layer_type == "Gather") { CV_Assert(node_proto.input_size() == 2); CV_Assert(layerParams.has("axis")); Mat input = getBlob(node_proto, constBlobs, 0); Mat indexMat = getBlob(node_proto, constBlobs, 1); CV_Assert_N(indexMat.type() == CV_32S, indexMat.total() == 1); int index = indexMat.at<int>(0); int axis = layerParams.get<int>("axis"); std::vector<cv::Range> ranges(input.dims, Range::all()); ranges[axis] = Range(index, index + 1); Mat out = input(ranges); constBlobs.insert(std::make_pair(layerParams.name, out)); continue; } else if (layer_type == "Concat") { bool hasVariableInps = false; for (int i = 0; i < node_proto.input_size(); ++i) { if (layer_id.find(node_proto.input(i)) != layer_id.end()) { hasVariableInps = true; break; } } if (!hasVariableInps) { std::vector<Mat> inputs(node_proto.input_size()), concatenated; for (size_t i = 0; i < inputs.size(); ++i) { inputs[i] = getBlob(node_proto, constBlobs, i); } Ptr<Layer> concat = ConcatLayer::create(layerParams); runLayer(concat, inputs, concatenated); CV_Assert(concatenated.size() == 1); constBlobs.insert(std::make_pair(layerParams.name, concatenated[0])); continue; } } else { for (int j = 0; j < node_proto.input_size(); j++) { if (layer_id.find(node_proto.input(j)) == layer_id.end()) layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); } } int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams); layer_id.insert(std::make_pair(layerParams.name, LayerInfo(id, 0))); std::vector<MatShape> layerInpShapes, layerOutShapes, layerInternalShapes; for (int j = 0; j < node_proto.input_size(); j++) { layerId = layer_id.find(node_proto.input(j)); if (layerId != layer_id.end()) { dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j); // Collect input shapes. shapeIt = outShapes.find(node_proto.input(j)); CV_Assert(shapeIt != outShapes.end()); layerInpShapes.push_back(shapeIt->second); } } // Compute shape of output blob for this layer. Ptr<Layer> layer = dstNet.getLayer(id); layer->getMemoryShapes(layerInpShapes, 0, layerOutShapes, layerInternalShapes); CV_Assert(!layerOutShapes.empty()); outShapes[layerParams.name] = layerOutShapes[0]; } }