void EBLevelAdvect:: advectToFacesBCG(EBFluxFAB& a_extrapState, BaseIVFAB<Real>& a_boundaryPrim, const EBCellFAB & a_consState, const EBCellFAB & a_normalVel, const EBFluxFAB & a_advectionVel, const Box& a_cellBox, const EBISBox& a_ebisBox, const Real& a_dt, const Real& a_time, const EBCellFAB & a_source, const DataIndex& a_dit, bool a_doBoundaryPrim) { CH_TIME("EBLevelAdvect::advectToFacesBCG (fluxfab)"); IntVectSet cfivs; //not used here. only used in flux interpolation m_ebPatchAdvect[a_dit]->setTimeAndDt(a_time, a_dt); // EBCellFAB& primState = m_ebPatchAdvect[a_dit]->getPrimState(); m_ebPatchAdvect[a_dit]->setVelocities(a_normalVel, a_advectionVel); //placeholder (no flattening used here) EBCellFAB flattening; //not reused EBCellFAB slopesPrim[SpaceDim]; EBCellFAB slopesSeco[SpaceDim]; bool verbose = false; m_ebPatchAdvect[a_dit]->extrapolateBCG(a_extrapState, // primState, slopesPrim, slopesSeco, flattening, a_consState, a_source, a_cellBox, a_dit, verbose); if (a_doBoundaryPrim) { IntVectSet irregIVS = a_ebisBox.getIrregIVS(a_cellBox); m_ebPatchAdvect[a_dit]->computeEBIrregFlux(a_boundaryPrim, // primState, a_consState, slopesPrim, irregIVS, a_source); } }
int testIFFAB(const EBISBox& a_ebisBox, const Box& a_box) { IntVectSet ivs = a_ebisBox.getIrregIVS(a_box); if (ivs.isEmpty()) return 0; Interval comps(0,0); for (int idir = 0; idir < SpaceDim; idir++) { BaseIFFAB<Real> srcFab(ivs, a_ebisBox.getEBGraph(), idir, 1); BaseIFFAB<Real> dstFab(ivs, a_ebisBox.getEBGraph(), idir, 1); //set source fab to right ans for (FaceIterator faceit(ivs, a_ebisBox.getEBGraph(), idir, FaceStop::SurroundingWithBoundary); faceit.ok(); ++faceit) { srcFab(faceit(), 0) = rightAns(faceit()); } //linearize the data to dst int sizeFab = srcFab.size(a_box, comps); unsigned char* buf = new unsigned char[sizeFab]; srcFab.linearOut(buf, a_box, comps); dstFab.linearIn( buf, a_box, comps); delete[] buf; //check the answer int eekflag = 0; Real tolerance = 0.001; for (FaceIterator faceit(ivs, a_ebisBox.getEBGraph(), idir, FaceStop::SurroundingWithBoundary); faceit.ok(); ++faceit) { Real correct = rightAns(faceit()); if (Abs(dstFab(faceit(), 0) - correct) > tolerance) { pout() << "ivfab test failed at face " << faceit().gridIndex(Side::Lo) << faceit().gridIndex(Side::Hi) << endl; eekflag = -3; return eekflag; } } } return 0; }
void EBCFData:: getEBCFIVSGrid(IntVectSet& a_ebcfivs, const Box& a_grid, const int& a_idir, const Side::LoHiSide& a_side, const IntVect& a_diagGrow, const ProblemDomain& a_domain, const IntVectSet& a_cfivs, const EBISBox& a_ebisBox) { Box gridSide = adjCellBox(a_grid, a_idir, a_side, 1); Box grownBoxSide = gridSide; grownBoxSide &= a_domain; for (int jdir = 0; jdir < SpaceDim; jdir++) { if (jdir != a_idir) { grownBoxSide.grow(jdir, a_diagGrow[jdir]); } } grownBoxSide &= a_domain; a_ebcfivs = a_cfivs; for (int jdir = 0; jdir < SpaceDim; jdir++) { if (jdir != a_idir) { a_ebcfivs.grow(jdir, a_diagGrow[jdir]); } } IntVectSet ivsIrreg = a_ebisBox.getIrregIVS(grownBoxSide); ivsIrreg.grow(3); ivsIrreg &= a_domain; a_ebcfivs &= ivsIrreg; a_ebcfivs &= gridSide; }
int testIVFAB(const EBISBox& a_ebisBox, const Box& a_box) { IntVectSet ivs = a_ebisBox.getIrregIVS(a_box); if (ivs.isEmpty()) return 0; Interval comps(0,0); BaseIVFAB<Real> srcFab(ivs, a_ebisBox.getEBGraph(), 1); BaseIVFAB<Real> dstFab(ivs, a_ebisBox.getEBGraph(), 1); //set source fab to right ans for (VoFIterator vofit(ivs, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit) { srcFab(vofit(), 0) = rightAns(vofit()); } //linearize the data to dst int sizeFab = srcFab.size(a_box, comps); unsigned char* buf = new unsigned char[sizeFab]; srcFab.linearOut(buf, a_box, comps); dstFab.linearIn( buf, a_box, comps); delete[] buf; //check the answer int eekflag = 0; Real tolerance = 0.001; for (VoFIterator vofit(ivs, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit) { Real correct = rightAns(vofit()); if (Abs(dstFab(vofit(), 0) - correct) > tolerance) { pout() << "ivfab test failed at vof " << vofit().gridIndex() << endl; eekflag = -1; return eekflag; } } return 0; }
int checkEBISBox(const Box& a_gridCoar, const EBISBox& a_ebisBoxCoar, const EBISBox& a_ebisBoxFine) { IntVectSet ivs = a_ebisBoxCoar.getIrregIVS(a_gridCoar); Real dxCoar = 2; Real dxFine = 1; #if CH_SPACEDIM==2 Real areaFineCell = dxFine; Real areaCoarCell = dxCoar; Real voluFineCell = dxFine*dxFine; Real voluCoarCell = dxCoar*dxCoar; #elif CH_SPACEDIM==3 Real areaFineCell = dxFine*dxFine; Real areaCoarCell = dxCoar*dxCoar; Real voluFineCell = dxFine*dxFine*dxFine; Real voluCoarCell = dxCoar*dxCoar*dxCoar; #else MayDay::Error(); #endif int retval = 0; for (VoFIterator vofit(ivs, a_ebisBoxCoar.getEBGraph()); vofit.ok(); ++vofit) { const VolIndex& vofCoar = vofit(); Vector<VolIndex> vofsFine = a_ebisBoxCoar.refine(vofCoar); //check the easy bits Real volumCoar = a_ebisBoxCoar.volFrac( vofCoar); RealVect areaCritCoar = a_ebisBoxCoar.bndryArea(vofCoar)* a_ebisBoxCoar.normal(vofCoar); Real volumFine = 0; RealVect areaCritFine = RealVect::Zero; for (int ivof = 0; ivof < vofsFine.size(); ivof++) { volumFine += a_ebisBoxFine.volFrac( vofsFine[ivof]); areaCritFine += a_ebisBoxFine.bndryArea(vofsFine[ivof])* a_ebisBoxFine.normal(vofsFine[ivof]); } volumFine *= voluFineCell; areaCritFine *= areaFineCell; volumCoar *= voluCoarCell; areaCritCoar *= areaCoarCell; Real tolerance = 1.0e-10; if (Abs(volumFine -volumCoar) > tolerance*volumCoar) { pout() << "volume problem in coar cell " << vofCoar.gridIndex() << endl; retval = -1; } // Real maxCc = 0.0; // Real maxDev = 0.0; for (int idir=0; idir<SpaceDim; idir++) { if (Abs(areaCritFine[idir]-areaCritCoar[idir]) > tolerance*Abs(areaCritCoar[idir])) { pout() << "bndry area problem in coar cell " << vofCoar.gridIndex() << endl; retval = -2; } } //centroids are a bit uglier to test // RealVect bndryCentroidCoar = a_ebisBoxCoar.bndryCentroid( vofCoar); // RealVect bndryCentroidFine = RealVect::Zero; //the areas are somewhat more painful to test // for (int idir = 0; idir < SpaceDim; idir++) // { // // } } return retval; }
void EBCompositeMACProjector:: correctTangentialVelocity(EBFaceFAB& a_velocity, const EBFaceFAB& a_gradient, const Box& a_grid, const EBISBox& a_ebisBox, const IntVectSet& a_cfivs) { CH_TIME("EBCompositeMACProjector::correctTangentialVelocity"); int velDir = a_velocity.direction(); int gradDir = a_gradient.direction(); //veldir is the face on which the velocity lives //graddir is the direction of the component //and the face on which the mac gradient lives CH_assert(velDir != gradDir); CH_assert(a_velocity.nComp() == 1); CH_assert(a_gradient.nComp() == 1); //updating in place in fortran so we have to save a acopy EBFaceFAB velSave(a_ebisBox, a_velocity.getCellRegion(), velDir, 1); velSave.copy(a_velocity); //interior box is the box where all of the stencil can be reached //without going out of the domain ProblemDomain domainBox = a_ebisBox.getDomain(); Box interiorBox = a_grid; interiorBox.grow(1); interiorBox &= domainBox; interiorBox.grow(-1); Box interiorFaceBox = surroundingNodes(interiorBox, velDir); if (!interiorBox.isEmpty()) { BaseFab<Real>& regVel = a_velocity.getSingleValuedFAB(); const BaseFab<Real>& regGrad = a_gradient.getSingleValuedFAB(); FORT_REGCORRECTTANVEL(CHF_FRA1(regVel,0), CHF_CONST_FRA1(regGrad,0), CHF_BOX(interiorFaceBox), CHF_INT(velDir), CHF_INT(gradDir)); } //do only irregular and boundary cells pointwise IntVectSet ivsIrreg = a_ebisBox.getIrregIVS(a_grid); IntVectSet ivsGrid(a_grid); ivsGrid -= interiorBox; ivsGrid |= ivsIrreg; FaceIterator faceit(ivsGrid, a_ebisBox.getEBGraph(), velDir, FaceStop::SurroundingWithBoundary); for (faceit.reset(); faceit.ok(); ++faceit) { //average neighboring grads in grad dir direction int numGrads = 0; Real gradAve = 0.0; const FaceIndex& velFace = faceit(); for (SideIterator sitVel; sitVel.ok(); ++sitVel) { const VolIndex& vofSide = velFace.getVoF(sitVel()); const IntVect& ivSide = vofSide.gridIndex(); //do not include stuff over coarse-fine interface and inside the domain //cfivs includes cells just outside domain if (!a_cfivs.contains(ivSide) && domainBox.contains(ivSide)) { for (SideIterator sitGrad; sitGrad.ok(); ++sitGrad) { Vector<FaceIndex> gradFaces = a_ebisBox.getFaces(vofSide, gradDir, sitGrad()); for (int iface = 0; iface < gradFaces.size(); iface++) { if (!gradFaces[iface].isBoundary()) { numGrads++; gradAve += a_gradient(gradFaces[iface], 0); } } }//end loop over gradient sides }//end cfivs check else { // inside coarse/fine interface or at domain boundary. extrapolate from neighboring vofs to get the gradient const Side::LoHiSide inSide = flip(sitVel()); const VolIndex& inSideVof = velFace.getVoF(inSide); const IntVect& inSideIV = inSideVof.gridIndex(); IntVect inSideFarIV = inSideIV; inSideFarIV[velDir] += sign(inSide); if (domainBox.contains(inSideIV) && domainBox.contains(inSideFarIV)) { Vector<VolIndex> farVofs = a_ebisBox.getVoFs(inSideFarIV); if (farVofs.size() == 1) { const VolIndex& inSideFarVof = farVofs[0]; for (SideIterator sitGrad; sitGrad.ok(); ++sitGrad) { //get the grad for the face adjoining inSideVof on the sitGrad side, in the gradDir direction Vector<FaceIndex> gradFaces = a_ebisBox.getFaces(inSideVof , gradDir, sitGrad()); Vector<FaceIndex> gradFarFaces = a_ebisBox.getFaces(inSideFarVof, gradDir, sitGrad()); if ( (gradFaces.size() == 1) && (gradFarFaces.size() == 1) ) { // if ( (!gradFaces[0].isBoundary()) && (!gradFarFaces[0].isBoundary()) ) // { const Real& inSideGrad = a_gradient(gradFaces[0], 0); const Real& inSideFarGrad = a_gradient(gradFarFaces[0], 0); Real extrapGrad = 2.0*inSideGrad - inSideFarGrad; gradAve += extrapGrad; numGrads++; // } } } } } }//end cfivs check }//end loop over sides of velocity face if (numGrads > 1) { gradAve /= Real(numGrads); } //remember that the fortran updated the velocity in place so //we have to use the saved velocity a_velocity(velFace, 0) = velSave(velFace, 0) - gradAve; } }
void EBPlanarShockIBC:: setBndrySlopes(EBCellFAB& a_deltaPrim, const EBCellFAB& a_primState, const EBISBox& a_ebisBox, const Box& a_box, const int& a_dir) { // don't want to deal with the periodic case CH_assert(!m_domain.isPeriodic(a_dir)); CH_assert(m_isDefined); CH_assert(m_isFortranCommonSet); Box loBox,hiBox,centerBox,domain; int hasLo,hasHi; Box slopeBox = a_deltaPrim.getRegion()&m_domain; int numSlop = a_deltaPrim.nComp(); // Generate the domain boundary boxes, loBox and hiBox, if there are // domain boundarys there eblohicenter(loBox,hasLo,hiBox,hasHi,centerBox,domain, slopeBox,m_domain,a_dir); // Set the boundary slopes if necessary if ((hasLo != 0) || (hasHi != 0)) { BaseFab<Real>& regDeltaPrim = a_deltaPrim.getSingleValuedFAB(); const BaseFab<Real>& regPrimState = a_primState.getSingleValuedFAB(); /**/ FORT_SLOPEBCS(CHF_FRA(regDeltaPrim), CHF_CONST_FRA(regPrimState), CHF_CONST_REAL(m_dx), CHF_CONST_INT(a_dir), CHF_BOX(loBox), CHF_CONST_INT(hasLo), CHF_BOX(hiBox), CHF_CONST_INT(hasHi)); /**/ } for(SideIterator sit; sit.ok(); ++sit) { bool doThisSide; Box thisBox; if(sit() == Side::Lo) { doThisSide = (hasLo != 0); thisBox = loBox; } else { doThisSide = (hasHi != 0); thisBox = hiBox; } if(doThisSide) { // the cells for which the regular calculation //are incorrect are the grown set of the multivalued //cells intersected with the appropriate bndry box //and added to the irregular cells on the boundary. Box boxGrown = thisBox; boxGrown.grow(a_dir, 1); boxGrown &= m_domain; IntVectSet ivs = a_ebisBox.getMultiCells(boxGrown); ivs &= loBox; IntVectSet ivsIrreg = a_ebisBox.getIrregIVS(thisBox); ivs |= ivsIrreg; for(VoFIterator vofit(ivs, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit) { const VolIndex& vof = vofit(); //all slopes at boundary get set to zero //except normal velocity. just following the //fortran here int inormVelVar = a_dir + QVELX; for(int ivar = 0; ivar < numSlop; ivar++) { if(ivar != inormVelVar) { a_deltaPrim(vof, ivar) = 0.0; } } //for normal velocity //do strangely limited slope //just lifted from the fortran. Side::LoHiSide otherSide = flip(sit()); Vector<FaceIndex> faces = a_ebisBox.getFaces(vof, a_dir, otherSide); Real thisVel = a_primState(vof, inormVelVar); Real otherVel = 0.; for(int iface = 0; iface < faces.size(); iface++) { VolIndex otherVoF = faces[iface].getVoF(otherSide); otherVel += a_primState(otherVoF,inormVelVar); } if(faces.size() > 0) { otherVel /= Real(faces.size()); Real slope; if(sit() == Side::Lo) { slope = otherVel - thisVel; } else { slope = thisVel - otherVel; } //trick to make sure state will not change sign if(slope*thisVel < 0) { a_deltaPrim(vof, inormVelVar) = 0.0; } else { //slope and vel same sign Real rsign = 1.0; if(thisVel < 0.0) rsign = -1.0; //told you this was odd. Real dvmin = Min(Abs(slope), Abs((Real)2.*thisVel)); a_deltaPrim(vof, inormVelVar) = rsign*dvmin; } } else //no faces on high side of low boundary vof { a_deltaPrim(vof, inormVelVar) = 0.0; } } //end loop over irregular vofs at boundary } } //end loop over boundary sides }
void kappaDivergence(EBCellFAB& a_divF, const EBFluxFAB& a_flux, const EBISBox& a_ebisBox, const Box& a_box, const Real& a_dx) { //set the divergence initially to zero //then loop through directions and increment the divergence //with each directions flux difference. a_divF.setVal(0.0); BaseFab<Real>& regDivF = a_divF.getSingleValuedFAB(); regDivF.setVal(0.); for (int idir = 0; idir < SpaceDim; idir++) { //update for the regular vofs in the nonconservative //case works for all single valued vofs. /* do the regular vofs */ /**/ const EBFaceFAB& fluxDir = a_flux[idir]; const BaseFab<Real>& regFluxDir = fluxDir.getSingleValuedFAB(); int ncons = 1; FORT_DIVERGEF( CHF_BOX(a_box), CHF_FRA(regDivF), CHF_CONST_FRA(regFluxDir), CHF_CONST_INT(idir), CHF_CONST_INT(ncons), CHF_CONST_REAL(a_dx)); /**/ } //update the irregular vofs using conservative diff IntVectSet ivsIrreg = a_ebisBox.getIrregIVS(a_box); for (VoFIterator vofit(ivsIrreg, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit) { const VolIndex& vof = vofit(); //divergence was set in regular update. we reset it // to zero and recalc. Real update = 0.; for ( int idir = 0; idir < SpaceDim; idir++) { const EBFaceFAB& fluxDir = a_flux[idir]; for (SideIterator sit; sit.ok(); ++sit) { int isign = sign(sit()); Vector<FaceIndex> faces = a_ebisBox.getFaces(vof, idir, sit()); for (int iface = 0; iface < faces.size(); iface++) { const FaceIndex& face = faces[iface]; Real areaFrac = a_ebisBox.areaFrac(face); Real faceFlux =fluxDir(face, 0); update += isign*areaFrac*faceFlux; } } } //add EB boundary condtions in divergence const IntVect& iv = vof.gridIndex(); Real bndryArea = a_ebisBox.bndryArea(vof); RealVect bndryCent = a_ebisBox.bndryCentroid(vof); RealVect normal = a_ebisBox.normal(vof); RealVect bndryLoc; RealVect exactF; for (int idir = 0; idir < SpaceDim; idir++) { bndryLoc[idir] = a_dx*(iv[idir] + 0.5 + bndryCent[idir]); } for (int idir = 0; idir < SpaceDim; idir++) { exactF[idir] = exactFlux(bndryLoc, idir); } Real bndryFlux = PolyGeom::dot(exactF, normal); update -= bndryFlux*bndryArea; update /= a_dx; //note NOT divided by volfrac a_divF(vof, 0) = update; } }
void EBGradDivFilter:: cellGradient(EBCellFAB& a_gradDiv, const EBCellFAB& a_gradVel, const EBCellFAB& a_vel, const EBFluxFAB& a_fluxVel, const EBFluxFAB& a_div, const Box& a_grid, const EBISBox& a_ebisBox, const DataIndex& a_dataIndex, bool a_multiplyByLambda, bool a_noExtrapToCovered) { CH_TIME("EBGradDivFilter::cellGradient"); int icomp = 0; EBCellFAB& lambdaFAB = m_lambda[a_dataIndex]; IntVectSet irregIVS = a_ebisBox.getIrregIVS(a_grid); for (int faceDir = 0; faceDir < SpaceDim; faceDir++) { const EBFaceFAB& faceDiv = a_div[faceDir]; const BaseFab<Real>& regFaceDiv = faceDiv.getSingleValuedFAB(); const BaseFab<Real>& regLambda = lambdaFAB.getSingleValuedFAB(); BaseFab<Real>& regGradDiv = a_gradDiv.getSingleValuedFAB(); int imultByLambda = 0; if (a_multiplyByLambda) { imultByLambda = 1; } FORT_EBGDFCELLGRAD(CHF_FRA1(regGradDiv, faceDir), CHF_CONST_FRA1(regFaceDiv, icomp), CHF_CONST_FRA1(regLambda, icomp), CHF_BOX(a_grid), CHF_CONST_REAL(m_dxFine[faceDir]), CHF_CONST_INT(faceDir), CHF_CONST_INT(imultByLambda)); //nonconservative gradient for (VoFIterator vofit(irregIVS, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit) { const VolIndex& vof = vofit(); Real gradVal = 0.0; Vector<FaceIndex> facesHi = a_ebisBox.getFaces(vof, faceDir, Side::Hi); Vector<FaceIndex> facesLo = a_ebisBox.getFaces(vof, faceDir, Side::Lo); bool zeroGrad = a_noExtrapToCovered && ((facesHi.size() == 0) || (facesLo.size() == 0)); if (zeroGrad) { gradVal = 0; } else { Real valHi= 0; if (facesHi.size() > 0) { for (int iface = 0; iface < facesHi.size(); iface++) { valHi += faceDiv(facesHi[iface], icomp); } valHi /= facesHi.size(); } else { valHi = ccpGetCoveredExtrapValue(vof, faceDir, Side::Hi, faceDiv, a_ebisBox, a_grid, m_domainFine, m_dxFine, icomp); } Real valLo= 0; if (facesLo.size() > 0) { for (int iface = 0; iface < facesLo.size(); iface++) { valLo += faceDiv(facesLo[iface], 0); } valLo /= facesLo.size(); } else { valLo = ccpGetCoveredExtrapValue(vof, faceDir, Side::Lo , faceDiv, a_ebisBox, a_grid, m_domainFine, m_dxFine, icomp); } gradVal = (valHi-valLo)/(m_dxFine[faceDir]); //multiply the lambda in since we have the area fractions lying about if (a_multiplyByLambda) { Real lambda = lambdaFAB(vof, 0); gradVal *= lambda; } } a_gradDiv(vof, faceDir) = gradVal; } } }
void EBGradDivFilter:: gradVel(EBCellFAB& a_gradVel, const EBCellFAB& a_vel, const Box& a_grid, const EBISBox& a_ebisBox, bool a_lowOrderOneSide) { CH_TIME("EBGradDivFilter::gradVel"); CH_assert(a_gradVel.nComp() == SpaceDim*SpaceDim); CH_assert(a_vel.nComp() == SpaceDim); int iLowOrderOneSide = 0; if (a_lowOrderOneSide) { iLowOrderOneSide = 1; } for (int derivDir = 0; derivDir < SpaceDim; derivDir++) { Box loBox, hiBox, centerBox; int hasLo, hasHi; EBArith::loHiCenter(loBox, hasLo, hiBox, hasHi, centerBox, m_domainFine, a_grid, derivDir); for (int velDir = 0; velDir < SpaceDim; velDir++) { BaseFab<Real>& regGradVel = a_gradVel.getSingleValuedFAB(); const BaseFab<Real>& regVel = a_vel.getSingleValuedFAB(); int gradcomp = getGradComp(velDir, derivDir); FORT_EBGDFGRADVEL(CHF_FRA1(regGradVel, gradcomp), CHF_CONST_FRA1(regVel, velDir), CHF_BOX(loBox), CHF_INT(hasLo), CHF_BOX(hiBox), CHF_INT(hasHi), CHF_BOX(centerBox), CHF_CONST_REAL(m_dxFine[derivDir]), CHF_CONST_INT(derivDir), CHF_CONST_INT(iLowOrderOneSide)); IntVectSet ivsIrreg = a_ebisBox.getIrregIVS(a_grid); if (!a_lowOrderOneSide) { ivsIrreg.grow(1); ivsIrreg &= a_grid; } for (VoFIterator vofit(ivsIrreg, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit) { const VolIndex& vof = vofit(); bool hasHi, hasLo; VolIndex vofHi, vofLo; Vector<FaceIndex> facesHi = a_ebisBox.getFaces(vof, derivDir, Side::Hi); Vector<FaceIndex> facesLo = a_ebisBox.getFaces(vof, derivDir, Side::Lo); hasHi = (facesHi.size() == 1) && (!facesHi[0].isBoundary()); hasLo = (facesLo.size() == 1) && (!facesLo[0].isBoundary()); if (hasLo) { vofLo = facesLo[0].getVoF(Side::Lo); } if (hasHi) { vofHi = facesHi[0].getVoF(Side::Hi); } Real gradVal; if (hasHi && hasLo) { gradVal = (a_vel(vofHi, velDir) - a_vel(vofLo, velDir))/(2.*m_dxFine[derivDir]); } else if (hasHi || hasLo) { //do one-sided diff CH_assert(!(hasHi && hasLo)); Side::LoHiSide side; VolIndex vofNear; if (hasLo) { side = Side::Lo; vofNear = vofLo; } else { side = Side::Hi; vofNear = vofHi; } int isign = sign(side); Vector<FaceIndex> facesFar = a_ebisBox.getFaces(vofNear, derivDir, side); bool hasVoFFar = (facesFar.size()==1) && (!facesFar[0].isBoundary()); Real valStart = a_vel(vof, velDir); Real valNear = a_vel(vofNear, velDir); if (hasVoFFar && !a_lowOrderOneSide) { VolIndex vofFar = facesFar[0].getVoF(side); Real valFar = a_vel(vofFar, velDir); gradVal = (4*(valNear - valStart)- (valFar-valStart))/(2.*isign*m_dxFine[derivDir]); } else { //do not have another point for stencil or specified low order one-sided. //drop order of derivative gradVal = (valNear - valStart)/(isign*m_dxFine[derivDir]); } } else { //only have one point, can only set gradient to zero gradVal = 0.0; } a_gradVel(vof, gradcomp) = gradVal; } } } }
void EBGradDivFilter:: faceDivergence(EBFaceFAB& a_divVel, const EBCellFAB& a_gradVel, const EBCellFAB& a_vel, const EBFluxFAB& a_fluxVel, const Box& a_grid, const EBISBox& a_ebisBox, const int& a_faceDir) { CH_TIME("EBGradDivFilter::faceDivergence"); CH_assert(a_divVel.nComp() == 1); CH_assert(a_vel.nComp() == SpaceDim); a_divVel.setVal(0.0); BaseFab<Real>& regDivVel = a_divVel.getSingleValuedFAB(); const BaseFab<Real>& regVel = a_vel.getSingleValuedFAB(); const BaseFab<Real>& regGradVel= a_gradVel.getSingleValuedFAB(); Box interiorFaceBox = a_grid; interiorFaceBox.grow(a_faceDir, 1); interiorFaceBox &= m_domainFine; interiorFaceBox.grow(a_faceDir, -1); interiorFaceBox.surroundingNodes(a_faceDir); for (int divDir = 0; divDir < SpaceDim; divDir++) { FORT_EBGDFFACEDIVINCR(CHF_FRA1(regDivVel, 0), CHF_FRA(regVel), CHF_FRA(regGradVel), CHF_BOX(interiorFaceBox), CHF_REAL(m_dxFine[divDir]), CHF_INT(a_faceDir), CHF_INT(divDir)); } IntVectSet irregIVS = a_ebisBox.getIrregIVS(a_grid); FaceStop::WhichFaces stopCrit; if (m_domainFine.isPeriodic(a_faceDir)) { stopCrit = FaceStop::SurroundingWithBoundary; } else { stopCrit = FaceStop::SurroundingNoBoundary; } for (FaceIterator faceit(irregIVS, a_ebisBox.getEBGraph(), a_faceDir, stopCrit); faceit.ok(); ++faceit) { Real divVal = 0.0; for (int divDir=0; divDir<SpaceDim; divDir++) { if (divDir == a_faceDir) { divVal += (a_vel(faceit().getVoF(Side::Hi), a_faceDir) - a_vel(faceit().getVoF(Side::Lo), a_faceDir))/m_dxFine[divDir]; } else { // take average of cell-centered tangential derivatives // and increment div //so this is partial (vel_divdir)/partial (x_divdir) int velcomp = divDir; int gradcomp = getGradComp(velcomp, divDir); divVal += 0.5*(a_gradVel(faceit().getVoF(Side::Hi), gradcomp) + a_gradVel(faceit().getVoF(Side::Lo), gradcomp)); } } a_divVel(faceit(), 0) = divVal; } // end loop over interior irregular faces if (!m_domainFine.isPeriodic(a_faceDir)) { //set the boundary face divergence to an extrapolation of the neighboring face divergences for (SideIterator sit; sit.ok(); ++sit) { Box bndryBox = adjCellBox(a_grid, a_faceDir, sit(), 1); int ishift = -sign(sit()); bndryBox.shift(a_faceDir, ishift); IntVectSet bndryIVS(bndryBox); for (FaceIterator faceit(bndryIVS, a_ebisBox.getEBGraph(), a_faceDir, FaceStop::AllBoundaryOnly); faceit.ok(); ++faceit) { Real faceDiv = getDomainDivergence(a_gradVel, a_vel, a_fluxVel, a_grid, a_ebisBox, a_faceDir, faceit(), sit()); a_divVel(faceit(), 0) = faceDiv; } } } }