// ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; if (argc <= 1) { usage(); exit(1); } const char* eclipseFilename = argv[1]; EclipseStateConstPtr eclState; ParserPtr parser(new Opm::Parser); Opm::ParseContext parseContext({{ ParseContext::PARSE_RANDOM_SLASH , InputError::IGNORE }, { ParseContext::PARSE_UNKNOWN_KEYWORD, InputError::IGNORE}, { ParseContext::PARSE_RANDOM_TEXT, InputError::IGNORE}, { ParseContext::UNSUPPORTED_SCHEDULE_GEO_MODIFIER, InputError::IGNORE}, { ParseContext::UNSUPPORTED_COMPORD_TYPE, InputError::IGNORE}, { ParseContext::UNSUPPORTED_INITIAL_THPRES, InputError::IGNORE}, { ParseContext::INTERNAL_ERROR_UNINITIALIZED_THPRES, InputError::IGNORE} }); Opm::DeckConstPtr deck(parser->parseFile(eclipseFilename, parseContext)); eclState.reset(new EclipseState(deck, parseContext)); GridManager gm(deck); const UnstructuredGrid& grid = *gm.c_grid(); using boost::filesystem::path; path fpath(eclipseFilename); std::string baseName; if (boost::to_upper_copy(path(fpath.extension()).string())== ".DATA") { baseName = path(fpath.stem()).string(); } else { baseName = path(fpath.filename()).string(); } std::string logFile = baseName + ".SATFUNCLOG"; Opm::time::StopWatch timer; timer.start(); RelpermDiagnostics diagnostic(logFile); diagnostic.diagnosis(eclState, deck, grid); timer.stop(); double tt = timer.secsSinceStart(); std::cout << "relperm diagnostics: " << tt << " seconds." << std::endl; } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }
// ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; std::cout << "\n================ Test program for weakly compressible two-phase flow with polymer ===============\n\n"; parameter::ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); boost::scoped_ptr<GridManager> grid; boost::scoped_ptr<BlackoilPropertiesInterface> props; boost::scoped_ptr<RockCompressibility> rock_comp; Opm::DeckConstPtr deck; EclipseStateConstPtr eclipseState; std::unique_ptr<PolymerBlackoilState> state; Opm::PolymerProperties poly_props; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; if (use_deck) { std::string deck_filename = param.get<std::string>("deck_filename"); ParserPtr parser(new Opm::Parser()); Opm::ParseContext parseContext({{ ParseContext::PARSE_RANDOM_SLASH , InputError::IGNORE }}); deck = parser->parseFile(deck_filename , parseContext); eclipseState.reset(new Opm::EclipseState(deck , parseContext)); // Grid init grid.reset(new GridManager(deck)); { const UnstructuredGrid& ug_grid = *(grid->c_grid()); // Rock and fluid init props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, ug_grid)); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); state.reset( new PolymerBlackoilState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ), 2)); // Rock compressibility. rock_comp.reset(new RockCompressibility(deck, eclipseState)); // Gravity. gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(ug_grid, *props, param, gravity[2], *state); } else { initStateFromDeck(ug_grid, *props, deck, gravity[2], *state); } initBlackoilSurfvol(ug_grid, *props, *state); // Init polymer properties. poly_props.readFromDeck(deck, eclipseState); } } else { // Grid init. const int nx = param.getDefault("nx", 100); const int ny = param.getDefault("ny", 100); const int nz = param.getDefault("nz", 1); const double dx = param.getDefault("dx", 1.0); const double dy = param.getDefault("dy", 1.0); const double dz = param.getDefault("dz", 1.0); grid.reset(new GridManager(nx, ny, nz, dx, dy, dz)); { const UnstructuredGrid& ug_grid = *(grid->c_grid()); // Rock and fluid init. props.reset(new BlackoilPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid ))); state.reset( new PolymerBlackoilState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ) , 2)); // Rock compressibility. rock_comp.reset(new RockCompressibility(param)); // Gravity. gravity[2] = param.getDefault("gravity", 0.0); // Init state variables (saturation and pressure). initStateBasic(ug_grid, *props, param, gravity[2], *state); initBlackoilSurfvol(ug_grid, *props, *state); // Init Polymer state if (param.has("poly_init")) { double poly_init = param.getDefault("poly_init", 0.0); for (int cell = 0; cell < UgGridHelpers::numCells( ug_grid ); ++cell) { double smin[2], smax[2]; auto& saturation = state->saturation(); auto& concentration = state->getCellData( state->CONCENTRATION ); auto& max_concentration = state->getCellData( state->CMAX ); props->satRange(1, &cell, smin, smax); if (saturation[2*cell] > 0.5*(smin[0] + smax[0])) { concentration[cell] = poly_init; max_concentration[cell] = poly_init; } else { saturation[2*cell + 0] = 0.; saturation[2*cell + 1] = 1.; concentration[cell] = 0.; max_concentration[cell] = 0.; } } } } // Init polymer properties. // Setting defaults to provide a simple example case. double c_max = param.getDefault("c_max_limit", 5.0); double mix_param = param.getDefault("mix_param", 1.0); double rock_density = param.getDefault("rock_density", 1000.0); double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15); double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability double c_max_ads = param.getDefault("c_max_ads", 1.); int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption); std::vector<double> c_vals_visc(2, -1e100); c_vals_visc[0] = 0.0; c_vals_visc[1] = 7.0; std::vector<double> visc_mult_vals(2, -1e100); visc_mult_vals[0] = 1.0; // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0); visc_mult_vals[1] = 20.0; std::vector<double> c_vals_ads(3, -1e100); c_vals_ads[0] = 0.0; c_vals_ads[1] = 2.0; c_vals_ads[2] = 8.0; std::vector<double> ads_vals(3, -1e100); ads_vals[0] = 0.0; ads_vals[1] = 0.0015; ads_vals[2] = 0.0025; // ads_vals[1] = 0.0; // ads_vals[2] = 0.0; std::vector<double> water_vel_vals(2, -1e100); water_vel_vals[0] = 0.0; water_vel_vals[1] = 10.0; std::vector<double> shear_vrf_vals(2, -1e100); shear_vrf_vals[0] = 1.0; shear_vrf_vals[1] = 1.0; poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads, static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index), c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals, water_vel_vals, shear_vrf_vals); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; // Linear solver. LinearSolverFactory linsolver(param); // Write parameters used for later reference. bool output = param.getDefault("output", true); if (output) { std::string output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath); } param.writeParam(output_dir + "/simulation.param"); } std::cout << "\n\n================ Starting main simulation loop ===============\n" << std::flush; SimulatorReport rep; if (!use_deck) { // Simple simulation without a deck. PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day, param.getDefault("poly_end_days", 800.0)*Opm::unit::day, param.getDefault("poly_amount", poly_props.cMax())); WellsManager wells; SimulatorCompressiblePolymer simulator(param, *grid->c_grid(), *props, poly_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, polymer_inflow, linsolver, grav); SimulatorTimer simtimer; simtimer.init(param); warnIfUnusedParams(param); WellState well_state; well_state.init(0, *state); rep = simulator.run(simtimer, *state, well_state); } else { // With a deck, we may have more epochs etc. WellState well_state; int step = 0; Opm::TimeMapPtr timeMap(new Opm::TimeMap(deck)); SimulatorTimer simtimer; simtimer.init(timeMap); // Check for WPOLYMER presence in last report step to decide // polymer injection control type. const bool use_wpolymer = deck->hasKeyword("WPOLYMER"); if (use_wpolymer) { if (param.has("poly_start_days")) { OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. " "You seem to be trying to control it via parameter poly_start_days (etc.) as well."); } } for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) { simtimer.setCurrentStepNum(reportStepIdx); // Report on start of report step. std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------" << "\n (number of remaining steps: " << simtimer.numSteps() - step << ")\n\n" << std::flush; // Create new wells, polymer inflow controls. WellsManager wells(eclipseState , reportStepIdx , *grid->c_grid(), props->permeability()); boost::scoped_ptr<PolymerInflowInterface> polymer_inflow; if (use_wpolymer) { if (wells.c_wells() == 0) { OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells."); } polymer_inflow.reset(new PolymerInflowFromDeck(eclipseState, *wells.c_wells(), props->numCells(), simtimer.currentStepNum())); } else { polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day, param.getDefault("poly_end_days", 800.0)*Opm::unit::day, param.getDefault("poly_amount", poly_props.cMax()))); } // @@@ HACK: we should really make a new well state and // properly transfer old well state to it every report step, // since number of wells may change etc. if (reportStepIdx == 0) { well_state.init(wells.c_wells(), *state); } // Create and run simulator. SimulatorCompressiblePolymer simulator(param, *grid->c_grid(), *props, poly_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, *polymer_inflow, linsolver, grav); if (reportStepIdx == 0) { warnIfUnusedParams(param); } SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state); // Update total timing report and remember step number. rep += epoch_rep; step = simtimer.currentStepNum(); } } std::cout << "\n\n================ End of simulation ===============\n\n"; rep.report(std::cout); } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }
// ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; std::cout << "\n================ Test program for weakly compressible two-phase flow ===============\n\n"; parameter::ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); EclipseStateConstPtr eclipseState; std::unique_ptr<GridManager> grid; std::unique_ptr<BlackoilPropertiesInterface> props; std::unique_ptr<RockCompressibility> rock_comp; ParserPtr parser(new Opm::Parser()); Opm::DeckConstPtr deck; BlackoilState state; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; if (use_deck) { ParseMode parseMode; std::string deck_filename = param.get<std::string>("deck_filename"); deck = parser->parseFile(deck_filename , parseMode); eclipseState.reset(new EclipseState(deck, parseMode)); // Grid init grid.reset(new GridManager(deck)); // Rock and fluid init props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, *grid->c_grid(), param)); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Rock compressibility. rock_comp.reset(new RockCompressibility(deck, eclipseState)); // Gravity. gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(*grid->c_grid(), *props, param, gravity[2], state); } else { initStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state); } initBlackoilSurfvol(*grid->c_grid(), *props, state); } else { // Grid init. const int nx = param.getDefault("nx", 100); const int ny = param.getDefault("ny", 100); const int nz = param.getDefault("nz", 1); const double dx = param.getDefault("dx", 1.0); const double dy = param.getDefault("dy", 1.0); const double dz = param.getDefault("dz", 1.0); grid.reset(new GridManager(nx, ny, nz, dx, dy, dz)); // Rock and fluid init. props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells)); // Rock compressibility. rock_comp.reset(new RockCompressibility(param)); // Gravity. gravity[2] = param.getDefault("gravity", 0.0); // Init state variables (saturation and pressure). initStateBasic(*grid->c_grid(), *props, param, gravity[2], state); initBlackoilSurfvol(*grid->c_grid(), *props, state); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; // Initialising src int num_cells = grid->c_grid()->number_of_cells; std::vector<double> src(num_cells, 0.0); if (use_deck) { // Do nothing, wells will be the driving force, not source terms. } else { // Compute pore volumes, in order to enable specifying injection rate // terms of total pore volume. std::vector<double> porevol; if (rock_comp->isActive()) { computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol); } else { computePorevolume(*grid->c_grid(), props->porosity(), porevol); } const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0); const double default_injection = use_gravity ? 0.0 : 0.1; const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection) *tot_porevol_init/unit::day; src[0] = flow_per_sec; src[num_cells - 1] = -flow_per_sec; } // Boundary conditions. FlowBCManager bcs; if (param.getDefault("use_pside", false)) { int pside = param.get<int>("pside"); double pside_pressure = param.get<double>("pside_pressure"); bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure); } // Linear solver. LinearSolverFactory linsolver(param); // Write parameters used for later reference. bool output = param.getDefault("output", true); std::ofstream epoch_os; std::string output_dir; if (output) { output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath); } std::string filename = output_dir + "/epoch_timing.param"; epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out); // open file to clean it. The file is appended to in SimulatorTwophase filename = output_dir + "/step_timing.param"; std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out); step_os.close(); param.writeParam(output_dir + "/simulation.param"); } std::cout << "\n\n================ Starting main simulation loop ===============\n"; SimulatorReport rep; if (!use_deck) { // Simple simulation without a deck. WellsManager wells; // no wells. SimulatorCompressibleTwophase simulator(param, *grid->c_grid(), *props, rock_comp->isActive() ? rock_comp.get() : 0, wells, src, bcs.c_bcs(), linsolver, grav); SimulatorTimer simtimer; simtimer.init(param); warnIfUnusedParams(param); WellState well_state; well_state.init(0, state); rep = simulator.run(simtimer, state, well_state); } else { // With a deck, we may have more epochs etc. WellState well_state; int step = 0; SimulatorTimer simtimer; // Use timer for last epoch to obtain total time. Opm::TimeMapPtr timeMap(new Opm::TimeMap(deck)); simtimer.init(timeMap); const double total_time = simtimer.totalTime(); for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) { simtimer.setCurrentStepNum(step); simtimer.setTotalTime(total_time); // Report on start of report step. std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------" << "\n (number of steps: " << simtimer.numSteps() - step << ")\n\n" << std::flush; // Create new wells, well_state WellsManager wells(eclipseState , reportStepIdx , *grid->c_grid(), props->permeability()); // @@@ HACK: we should really make a new well state and // properly transfer old well state to it every report step, // since number of wells may change etc. if (reportStepIdx == 0) { well_state.init(wells.c_wells(), state); } // Create and run simulator. SimulatorCompressibleTwophase simulator(param, *grid->c_grid(), *props, rock_comp->isActive() ? rock_comp.get() : 0, wells, src, bcs.c_bcs(), linsolver, grav); if (reportStepIdx == 0) { warnIfUnusedParams(param); } SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state); if (output) { epoch_rep.reportParam(epoch_os); } // Update total timing report and remember step number. rep += epoch_rep; step = simtimer.currentStepNum(); } } std::cout << "\n\n================ End of simulation ===============\n\n"; rep.report(std::cout); if (output) { std::string filename = output_dir + "/walltime.param"; std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out); rep.reportParam(tot_os); } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }
// ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; std::cout << "\n================ Test program for weakly compressible two-phase flow with polymer ===============\n\n"; parameter::ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); boost::scoped_ptr<EclipseGridParser> deck; boost::scoped_ptr<GridManager> grid; boost::scoped_ptr<BlackoilPropertiesInterface> props; boost::scoped_ptr<RockCompressibility> rock_comp; EclipseStateConstPtr eclipseState; PolymerBlackoilState state; Opm::PolymerProperties poly_props; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; if (use_deck) { std::string deck_filename = param.get<std::string>("deck_filename"); ParserPtr parser(new Opm::Parser()); eclipseState.reset(new Opm::EclipseState(parser->parseFile(deck_filename))); deck.reset(new EclipseGridParser(deck_filename)); // Grid init grid.reset(new GridManager(*deck)); // Rock and fluid init props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid())); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Rock compressibility. rock_comp.reset(new RockCompressibility(*deck)); // Gravity. gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(*grid->c_grid(), *props, param, gravity[2], state); } else { initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state); } initBlackoilSurfvol(*grid->c_grid(), *props, state); // Init polymer properties. poly_props.readFromDeck(*deck); } else { // Grid init. const int nx = param.getDefault("nx", 100); const int ny = param.getDefault("ny", 100); const int nz = param.getDefault("nz", 1); const double dx = param.getDefault("dx", 1.0); const double dy = param.getDefault("dy", 1.0); const double dz = param.getDefault("dz", 1.0); grid.reset(new GridManager(nx, ny, nz, dx, dy, dz)); // Rock and fluid init. props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells)); // Rock compressibility. rock_comp.reset(new RockCompressibility(param)); // Gravity. gravity[2] = param.getDefault("gravity", 0.0); // Init state variables (saturation and pressure). initStateBasic(*grid->c_grid(), *props, param, gravity[2], state); initBlackoilSurfvol(*grid->c_grid(), *props, state); // Init Polymer state if (param.has("poly_init")) { double poly_init = param.getDefault("poly_init", 0.0); for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) { double smin[2], smax[2]; props->satRange(1, &cell, smin, smax); if (state.saturation()[2*cell] > 0.5*(smin[0] + smax[0])) { state.concentration()[cell] = poly_init; state.maxconcentration()[cell] = poly_init; } else { state.saturation()[2*cell + 0] = 0.; state.saturation()[2*cell + 1] = 1.; state.concentration()[cell] = 0.; state.maxconcentration()[cell] = 0.; } } } // Init polymer properties. // Setting defaults to provide a simple example case. double c_max = param.getDefault("c_max_limit", 5.0); double mix_param = param.getDefault("mix_param", 1.0); double rock_density = param.getDefault("rock_density", 1000.0); double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15); double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability double c_max_ads = param.getDefault("c_max_ads", 1.); int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption); std::vector<double> c_vals_visc(2, -1e100); c_vals_visc[0] = 0.0; c_vals_visc[1] = 7.0; std::vector<double> visc_mult_vals(2, -1e100); visc_mult_vals[0] = 1.0; // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0); visc_mult_vals[1] = 20.0; std::vector<double> c_vals_ads(3, -1e100); c_vals_ads[0] = 0.0; c_vals_ads[1] = 2.0; c_vals_ads[2] = 8.0; std::vector<double> ads_vals(3, -1e100); ads_vals[0] = 0.0; ads_vals[1] = 0.0015; ads_vals[2] = 0.0025; // ads_vals[1] = 0.0; // ads_vals[2] = 0.0; poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads, static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index), c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; // Initialising src int num_cells = grid->c_grid()->number_of_cells; std::vector<double> src(num_cells, 0.0); if (use_deck) { // Do nothing, wells will be the driving force, not source terms. } else { // Compute pore volumes, in order to enable specifying injection rate // terms of total pore volume. std::vector<double> porevol; if (rock_comp->isActive()) { computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol); } else { computePorevolume(*grid->c_grid(), props->porosity(), porevol); } const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0); const double default_injection = use_gravity ? 0.0 : 0.1; const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection) *tot_porevol_init/unit::day; src[0] = flow_per_sec; src[num_cells - 1] = -flow_per_sec; } // Boundary conditions. FlowBCManager bcs; if (param.getDefault("use_pside", false)) { int pside = param.get<int>("pside"); double pside_pressure = param.get<double>("pside_pressure"); bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure); } // Linear solver. LinearSolverFactory linsolver(param); // Write parameters used for later reference. bool output = param.getDefault("output", true); if (output) { std::string output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath); } param.writeParam(output_dir + "/simulation.param"); } std::cout << "\n\n================ Starting main simulation loop ===============\n" << " (number of epochs: " << (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush; SimulatorReport rep; if (!use_deck) { // Simple simulation without a deck. PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day, param.getDefault("poly_end_days", 800.0)*Opm::unit::day, param.getDefault("poly_amount", poly_props.cMax())); WellsManager wells; SimulatorCompressiblePolymer simulator(param, *grid->c_grid(), *props, poly_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, polymer_inflow, src, bcs.c_bcs(), linsolver, grav); SimulatorTimer simtimer; simtimer.init(param); warnIfUnusedParams(param); WellState well_state; well_state.init(0, state); rep = simulator.run(simtimer, state, well_state); } else { // With a deck, we may have more epochs etc. WellState well_state; int step = 0; SimulatorTimer simtimer; // Use timer for last epoch to obtain total time. deck->setCurrentEpoch(deck->numberOfEpochs() - 1); simtimer.init(*deck); const double total_time = simtimer.totalTime(); // Check for WPOLYMER presence in last epoch to decide // polymer injection control type. const bool use_wpolymer = deck->hasField("WPOLYMER"); if (use_wpolymer) { if (param.has("poly_start_days")) { OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. " "You seem to be trying to control it via parameter poly_start_days (etc.) as well."); } } for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) { // Set epoch index. deck->setCurrentEpoch(epoch); // Update the timer. if (deck->hasField("TSTEP")) { simtimer.init(*deck); } else { if (epoch != 0) { OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch); } simtimer.init(param); } simtimer.setCurrentStepNum(step); simtimer.setTotalTime(total_time); // Report on start of epoch. std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------" << "\n (number of steps: " << simtimer.numSteps() - step << ")\n\n" << std::flush; // Create new wells, polymer inflow controls. WellsManager wells(eclipseState , epoch , *grid->c_grid(), props->permeability()); boost::scoped_ptr<PolymerInflowInterface> polymer_inflow; if (use_wpolymer) { if (wells.c_wells() == 0) { OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells."); } polymer_inflow.reset(new PolymerInflowFromDeck(*deck, *wells.c_wells(), props->numCells())); } else { polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day, param.getDefault("poly_end_days", 800.0)*Opm::unit::day, param.getDefault("poly_amount", poly_props.cMax()))); } // @@@ HACK: we should really make a new well state and // properly transfer old well state to it every epoch, // since number of wells may change etc. if (epoch == 0) { well_state.init(wells.c_wells(), state); } // Create and run simulator. SimulatorCompressiblePolymer simulator(param, *grid->c_grid(), *props, poly_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, *polymer_inflow, src, bcs.c_bcs(), linsolver, grav); if (epoch == 0) { warnIfUnusedParams(param); } SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state); // Update total timing report and remember step number. rep += epoch_rep; step = simtimer.currentStepNum(); } } std::cout << "\n\n================ End of simulation ===============\n\n"; rep.report(std::cout); } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }