//============================================================================= double Epetra_MsrMatrix::NormOne() const { if (NormOne_>-1.0) return(NormOne_); if (!Filled()) EPETRA_CHK_ERR(-1); // Matrix must be filled. Epetra_Vector * x = new Epetra_Vector(RowMatrixRowMap()); // Need temp vector for column sums Epetra_Vector * xp = 0; Epetra_Vector * x_tmp = 0; // If we have a non-trivial importer, we must export elements that are permuted or belong to other processors if (RowMatrixImporter()!=0) { x_tmp = new Epetra_Vector(RowMatrixColMap()); // Create temporary import vector if needed xp = x_tmp; } int i, j; for (i=0; i < NumMyCols_; i++) (*xp)[i] = 0.0; for (i=0; i < NumMyRows_; i++) { int NumEntries = GetRow(i); for (j=0; j < NumEntries; j++) (*xp)[Indices_[j]] += fabs(Values_[j]); } if (RowMatrixImporter()!=0) x->Export(*x_tmp, *RowMatrixImporter(), Add); // Fill x with Values from temp vector x->MaxValue(&NormOne_); // Find max if (x_tmp!=0) delete x_tmp; delete x; UpdateFlops(NumGlobalNonzeros()); return(NormOne_); }
void PeridigmNS::Block::exportData(Epetra_Vector& target, int fieldId, PeridigmField::Step step, Epetra_CombineMode combineMode) { if(dataManager->hasData(fieldId, step)){ // scalar data if(target.Map().ElementSize() == 1){ if(oneDimensionalImporter.is_null()) oneDimensionalImporter = Teuchos::rcp(new Epetra_Import(*dataManager->getOverlapScalarPointMap(), target.Map())); target.Export(*(dataManager->getData(fieldId, step)), *oneDimensionalImporter, combineMode); } // vector data else if(target.Map().ElementSize() == 3){ if(threeDimensionalImporter.is_null()) threeDimensionalImporter = Teuchos::rcp(new Epetra_Import(*dataManager->getOverlapVectorPointMap(), target.Map())); target.Export(*(dataManager->getData(fieldId, step)), *threeDimensionalImporter, combineMode); } } }
void EpetraLinearOp::computeAbsRowSum(Epetra_Vector & x) const { TEUCHOS_ASSERT(!is_null(rowMatrix_)); RCP<Epetra_CrsMatrix> crsMatrix = Teuchos::rcp_dynamic_cast<Epetra_CrsMatrix>(rowMatrix_); TEUCHOS_TEST_FOR_EXCEPTION(is_null(crsMatrix), Exceptions::OpNotSupported, "EpetraLinearOp::computeAbsRowSum(...): wrapped matrix must be of type " "Epetra_CrsMatrix for this method. Other operator types are not supported." ); // // Put inverse of the sum of absolute values of the ith row of A in x[i]. // (this is a modified copy of Epetra_CrsMatrix::InvRowSums) // if (crsMatrix->Filled()) { TEUCHOS_TEST_FOR_EXCEPTION(is_null(crsMatrix), std::invalid_argument, "EpetraLinearOp::computeAbsRowSum(...): Epetra_CrsMatrix must be filled" ); } int i, j; x.PutScalar(0.0); // Make sure we sum into a vector of zeros. double * xp = (double*)x.Values(); if (crsMatrix->Graph().RangeMap().SameAs(x.Map()) && crsMatrix->Exporter() != 0) { Epetra_Vector x_tmp(crsMatrix->RowMap()); x_tmp.PutScalar(0.0); double * x_tmp_p = (double*)x_tmp.Values(); for (i=0; i < crsMatrix->NumMyRows(); i++) { int NumEntries = 0; double * RowValues = 0; crsMatrix->ExtractMyRowView(i,NumEntries,RowValues); for (j=0; j < NumEntries; j++) x_tmp_p[i] += std::abs(RowValues[j]); } TEUCHOS_TEST_FOR_EXCEPT(0!=x.Export(x_tmp, *crsMatrix->Exporter(), Add)); //Export partial row sums to x. } else if (crsMatrix->Graph().RowMap().SameAs(x.Map())) { for (i=0; i < crsMatrix->NumMyRows(); i++) { int NumEntries = 0; double * RowValues = 0; crsMatrix->ExtractMyRowView(i,NumEntries,RowValues); double scale = 0.0; for (j=0; j < NumEntries; j++) scale += std::abs(RowValues[j]); xp[i] = scale; } } else { // x.Map different than both crsMatrix->Graph().RowMap() and crsMatrix->Graph().RangeMap() TEUCHOS_TEST_FOR_EXCEPT(true); // The map of x must be the RowMap or RangeMap of A. } }
//============================================================================= //============================================================================= int Epetra_MsrMatrix::InvColSums(Epetra_Vector& x) const { // // Put inverse of the sum of absolute values of the jth column of A in x[j]. // if (!Filled()) EPETRA_CHK_ERR(-1); // Matrix must be filled. if (!OperatorDomainMap().SameAs(x.Map())) EPETRA_CHK_ERR(-2); // x must have the same distribution as the domain of A Epetra_Vector * xp = 0; Epetra_Vector * x_tmp = 0; // If we have a non-trivial importer, we must export elements that are permuted or belong to other processors if (RowMatrixImporter()!=0) { x_tmp = new Epetra_Vector(RowMatrixColMap()); // Create import vector if needed xp = x_tmp; } int ierr = 0; int i, j; for (i=0; i < NumMyCols_; i++) (*xp)[i] = 0.0; for (i=0; i < NumMyRows_; i++) { int NumEntries = GetRow(i);// Copies ith row of matrix into Values_ and Indices_ for (j=0; j < NumEntries; j++) (*xp)[Indices_[j]] += fabs(Values_[j]); } if (RowMatrixImporter()!=0){ x.Export(*x_tmp, *RowMatrixImporter(), Add); // Fill x with Values from import vector delete x_tmp; xp = &x; } // Invert values, don't allow them to get too large for (i=0; i < NumMyRows_; i++) { double scale = (*xp)[i]; if (scale<Epetra_MinDouble) { if (scale==0.0) ierr = 1; // Set error to 1 to signal that zero rowsum found (supercedes ierr = 2) else if (ierr!=1) ierr = 2; (*xp)[i] = Epetra_MaxDouble; } else (*xp)[i] = 1.0/scale; } UpdateFlops(NumGlobalNonzeros()); EPETRA_CHK_ERR(ierr); return(0); }
//============================================================================= int Epetra_FastCrsMatrix::Multiply(bool TransA, const Epetra_Vector& x, Epetra_Vector& y) const { // // This function forms the product y = A * x or y = A' * x // int i, j; double * xp = (double*)x.Values(); double *yp = (double*)y.Values(); int NumMyCols_ = NumMyCols(); if (!TransA) { // If we have a non-trivial importer, we must import elements that are permuted or are on other processors if (Importer()!=0) { if (ImportVector_!=0) { if (ImportVector_->NumVectors()!=1) { delete ImportVector_; ImportVector_= 0;} } if (ImportVector_==0) ImportVector_ = new Epetra_MultiVector(ColMap(),1); // Create import vector if needed ImportVector_->Import(x, *Importer(), Insert); xp = (double*)ImportVector_->Values(); } // If we have a non-trivial exporter, we must export elements that are permuted or belong to other processors if (Exporter()!=0) { if (ExportVector_!=0) { if (ExportVector_->NumVectors()!=1) { delete ExportVector_; ExportVector_= 0;} } if (ExportVector_==0) ExportVector_ = new Epetra_MultiVector(RowMap(),1); // Create Export vector if needed yp = (double*)ExportVector_->Values(); } // Do actual computation for (i=0; i < NumMyRows_; i++) { int NumEntries = *NumEntriesPerRow++; int * RowIndices = *Indices++; double * RowValues = *Values++; double sum = 0.0; for (j=0; j < NumEntries; j++) sum += RowValues[j] * xp[RowIndices[j]]; yp[i] = sum; } if (Exporter()!=0) y.Export(*ExportVector_, *Exporter(), Add); // Fill y with Values from export vector } else { // Transpose operation // If we have a non-trivial exporter, we must import elements that are permuted or are on other processors if (Exporter()!=0) { if (ExportVector_!=0) { if (ExportVector_->NumVectors()!=1) { delete ExportVector_; ExportVector_= 0;} } if (ExportVector_==0) ExportVector_ = new Epetra_MultiVector(RowMap(),1); // Create Export vector if needed ExportVector_->Import(x, *Exporter(), Insert); xp = (double*)ExportVector_->Values(); } // If we have a non-trivial importer, we must export elements that are permuted or belong to other processors if (Importer()!=0) { if (ImportVector_!=0) { if (ImportVector_->NumVectors()!=1) { delete ImportVector_; ImportVector_= 0;} } if (ImportVector_==0) ImportVector_ = new Epetra_MultiVector(ColMap(),1); // Create import vector if needed yp = (double*)ImportVector_->Values(); } // Do actual computation for (i=0; i < NumMyCols_; i++) yp[i] = 0.0; // Initialize y for transpose multiply for (i=0; i < NumMyRows_; i++) { int NumEntries = *NumEntriesPerRow++; int * RowIndices = *Indices++; double * RowValues = *Values++; for (j=0; j < NumEntries; j++) yp[RowIndices[j]] += RowValues[j] * xp[i]; } if (Importer()!=0) y.Export(*ImportVector_, *Importer(), Add); // Fill y with Values from export vector } UpdateFlops(2*NumGlobalNonzeros64()); return(0); }