void run_timestepping(EquationSystems& systems, GetPot& args) { TransientExplicitSystem& aux_system = systems.get_system<TransientExplicitSystem>("auxiliary"); SolidSystem& solid_system = systems.get_system<SolidSystem>("solid"); AutoPtr<VTKIO> io = AutoPtr<VTKIO>(new VTKIO(systems.get_mesh())); Real duration = args("duration", 1.0); for (unsigned int t_step = 0; t_step < duration/solid_system.deltat; t_step++) { // Progress in current phase [0..1] Real progress = t_step * solid_system.deltat / duration; systems.parameters.set<Real>("progress") = progress; systems.parameters.set<unsigned int>("step") = t_step; // Update message out << "===== Time Step " << std::setw(4) << t_step; out << " (" << std::fixed << std::setprecision(2) << std::setw(6) << (progress*100.) << "%)"; out << ", time = " << std::setw(7) << solid_system.time; out << " =====" << std::endl; // Advance timestep in auxiliary system aux_system.current_local_solution->close(); aux_system.old_local_solution->close(); *aux_system.older_local_solution = *aux_system.old_local_solution; *aux_system.old_local_solution = *aux_system.current_local_solution; out << "Solving Solid" << std::endl; solid_system.solve(); aux_system.reinit(); // Carry out the adaptive mesh refinement/coarsening out << "Doing a reinit of the equation systems" << std::endl; systems.reinit(); if (t_step % args("output/frequency", 1) == 0) { std::stringstream file_name; file_name << args("results_directory", "./") << "fem_"; file_name << std::setw(6) << std::setfill('0') << t_step; file_name << ".pvtu"; io->write_equation_systems(file_name.str(), systems); } // Advance to the next timestep in a transient problem out << "Advancing to next step" << std::endl; solid_system.time_solver->advance_timestep(); } }
void setUp() { this->build_mesh(); // libMesh *should* renumber now, or a ParallelMesh might not have // contiguous ids, which is a requirement to write xda files. _mesh->allow_renumbering(true); _es = new EquationSystems(*_mesh); _sys = &_es->add_system<System> ("SimpleSystem"); _sys->add_variable("u", FIRST); _es->init(); SlitFunc slitfunc; _sys->project_solution(&slitfunc); #ifdef LIBMESH_ENABLE_AMR MeshRefinement(*_mesh).uniformly_refine(1); _es->reinit(); MeshRefinement(*_mesh).uniformly_refine(1); _es->reinit(); #endif }
int main (int argc, char** argv) { LibMeshInit init(argc, argv); if (argc < 4) libMesh::out << "Usage: ./prog -d DIM filename" << std::endl; // Variables to get us started const unsigned int dim = atoi(argv[2]); std::string meshname (argv[3]); // declare a mesh... Mesh mesh(init.comm(), dim); // Read a mesh mesh.read(meshname); GMVIO(mesh).write ("out_0.gmv"); mesh.elem(0)->set_refinement_flag (Elem::REFINE); MeshRefinement mesh_refinement (mesh); mesh_refinement.refine_and_coarsen_elements (); mesh_refinement.uniformly_refine (2); mesh.print_info(); // Set up the equation system(s) EquationSystems es (mesh); LinearImplicitSystem& primary = es.add_system<LinearImplicitSystem>("primary"); primary.add_variable ("U", FIRST); primary.add_variable ("V", FIRST); primary.get_dof_map()._dof_coupling->resize(2); (*primary.get_dof_map()._dof_coupling)(0,0) = 1; (*primary.get_dof_map()._dof_coupling)(1,1) = 1; primary.attach_assemble_function(assemble); es.init (); es.print_info (); primary.get_dof_map().print_dof_constraints (); // call the solver. primary.solve (); GMVIO(mesh).write_equation_systems ("out_1.gmv", es); // Refine uniformly mesh_refinement.uniformly_refine (1); es.reinit (); // Write out the projected solution GMVIO(mesh).write_equation_systems ("out_2.gmv", es); // Solve again. Output the refined solution primary.solve (); GMVIO(mesh).write_equation_systems ("out_3.gmv", es); return 0; }
void assemble_and_solve(MeshBase & mesh, EquationSystems & equation_systems) { mesh.print_info(); LinearImplicitSystem & system = equation_systems.add_system<LinearImplicitSystem> ("Poisson"); unsigned int u_var = system.add_variable("u", FIRST, LAGRANGE); system.attach_assemble_function (assemble_poisson); // the cube has boundaries IDs 0, 1, 2, 3, 4 and 5 std::set<boundary_id_type> boundary_ids; for (int j = 0; j<6; ++j) boundary_ids.insert(j); // Create a vector storing the variable numbers which the BC applies to std::vector<unsigned int> variables(1); variables[0] = u_var; ZeroFunction<> zf; DirichletBoundary dirichlet_bc(boundary_ids, variables, &zf); system.get_dof_map().add_dirichlet_boundary(dirichlet_bc); equation_systems.init(); equation_systems.print_info(); #ifdef LIBMESH_ENABLE_AMR MeshRefinement mesh_refinement(mesh); mesh_refinement.refine_fraction() = 0.7; mesh_refinement.coarsen_fraction() = 0.3; mesh_refinement.max_h_level() = 5; const unsigned int max_r_steps = 2; for (unsigned int r_step=0; r_step<=max_r_steps; r_step++) { system.solve(); if (r_step != max_r_steps) { ErrorVector error; KellyErrorEstimator error_estimator; error_estimator.estimate_error(system, error); libMesh::out << "Error estimate\nl2 norm = " << error.l2_norm() << "\nmaximum = " << error.maximum() << std::endl; mesh_refinement.flag_elements_by_error_fraction (error); mesh_refinement.refine_and_coarsen_elements(); equation_systems.reinit(); } } #else system.solve(); #endif }