void train (const ssi_char_t *dir, const ssi_char_t *model) { // load samples StringList files; FileTools::ReadFilesFromDir (files, dir, "*.wav"); SampleList samples; samples.addUserName ("user"); for (ssi_size_t i = 0; i < files.size (); i++) { ssi_stream_t *stream = new ssi_stream_t; ssi_sample_t *sample = new ssi_sample_t; const ssi_char_t *filename = files.get (i); // parse class name FilePath fp (files.get(i)); ssi_char_t *class_name = ssi_strcpy (fp.getName ()); for (ssi_size_t j = 0; j < strlen (class_name); j++) { if (class_name[j] == '_') { class_name[j] = '\0'; break; } } ssi_size_t class_id = samples.addClassName (class_name); delete[] class_name; // read wave file WavTools::ReadWavFile (filename, *stream); // create sample sample->class_id = class_id; sample->num = 1; sample->score = 1.0f; sample->streams = new ssi_stream_t *[1]; sample->streams[0] = stream; sample->time = 0; sample->user_id = 0; // add sample samples.addSample (sample); } // extract features SampleList samples_t; EmoVoiceFeat *ev_feat = ssi_create (EmoVoiceFeat, "ev_feat", true); ModelTools::TransformSampleList (samples, samples_t, *ev_feat); // create model IModel *bayes = ssi_create (NaiveBayes, "bayes", true); Trainer trainer (bayes); // evalulation Evaluation eval; eval.evalKFold (&trainer, samples_t, 10); eval.print (); // train & save trainer.train (samples_t); trainer.save (model); }
bool ex_fusion(void *arg) { ssi_tic (); ssi_size_t n_classes = 4; ssi_size_t n_samples = 50; ssi_size_t n_streams = 3; ssi_real_t train_distr[][3] = { 0.25f, 0.25f, 0.1f, 0.25f, 0.75f, 0.1f, 0.75f, 0.75f, 0.1f, 0.75f, 0.75f, 0.1f }; ssi_real_t test_distr[][3] = { 0.5f, 0.5f, 0.5f }; SampleList strain; SampleList sdevel; SampleList stest; ModelTools::CreateTestSamples (strain, n_classes, n_samples, n_streams, train_distr, "user"); ModelTools::CreateTestSamples (sdevel, n_classes, n_samples, n_streams, train_distr, "user"); ModelTools::CreateTestSamples (stest, 1, n_samples * n_classes, n_streams, test_distr, "user"); ssi_char_t string[SSI_MAX_CHAR]; for (ssi_size_t n_class = 1; n_class < n_classes; n_class++) { ssi_sprint (string, "class%02d", n_class); stest.addClassName (string); } ssi_char_t *name = "fusion"; // strain { IModel **models = new IModel *[n_streams]; ssi_char_t string[SSI_MAX_CHAR]; for (ssi_size_t n_stream = 0; n_stream < n_streams; n_stream++) { ssi_sprint (string, "%s.%02d", name, n_stream); models[n_stream] = ssi_create(SimpleKNN, string, true); } SimpleFusion *fusion = ssi_create (SimpleFusion, name, true); Trainer trainer (n_streams, models, fusion); trainer.train (strain); trainer.save ("fusion"); delete[] models; } // evaluation { Trainer trainer; Trainer::Load (trainer, "fusion"); Evaluation eval; eval.eval (&trainer, sdevel); eval.print (); } ssi_print_off(""); ssi_toc_print (); ssi_print("\n"); return true; }
bool ex_eval_regression(void *arg) { Trainer::SetLogLevel(SSI_LOG_LEVEL_DEBUG); ssi_size_t n_samples = 1000; SampleList strain; SampleList sdevel; SampleList stest; ModelTools::CreateTestSamplesRegression(strain, n_samples, 0.1f); ModelTools::CreateTestSamplesRegression(stest, n_samples, 0.1f); LibSVM *model = ssi_create(LibSVM, 0, true); model->getOptions()->seed = 1234; model->getOptions()->silent = false; model->getOptions()->params.svm_type = LibSVM::TYPE::EPSILON_SVR; model->getOptions()->params.kernel_type = LibSVM::KERNEL::RADIAL; Trainer trainer(model); ISNorm::Params params; ISNorm::ZeroParams(params, ISNorm::METHOD::SCALE); params.limits[0] = 0.0f; params.limits[1] = 1.0f; trainer.setNormalization(¶ms); //ModelTools::PlotSamplesRegression(strain, "TRAINING", ssi_rect(640, 0, 400, 400)); trainer.train(strain); Evaluation eval; eval.eval(&trainer, stest); ssi_real_t pcc = eval.get_metric(Evaluation::METRIC::PEARSON_CC); ssi_real_t mse = eval.get_metric(Evaluation::METRIC::MSE); ssi_real_t rmse = eval.get_metric(Evaluation::METRIC::RMSE); ssi_print("\n -------------------------------------"); ssi_print("\n PCC: %.4f", pcc); ssi_print("\n MSE: %.4f", mse); ssi_print("\n RMSE: %.4f", rmse); ssi_print("\n -------------------------------------\n"); FILE *fp = fopen("eval_regression.csv", "w"); eval.print(fp, Evaluation::PRINT::CSV_EX); fclose(fp); //ModelTools::PlotSamplesRegression(stest, "TEST", ssi_rect(640, 0, 400, 400)); return true; }
bool ex_model_norm(void *arg) { Trainer::SetLogLevel(SSI_LOG_LEVEL_DEBUG); ssi_size_t n_classes = 4; ssi_size_t n_samples = 50; ssi_size_t n_streams = 1; ssi_real_t train_distr[][3] = { 0.25f, 0.25f, 0.1f, 0.25f, 0.75f, 0.1f, 0.75f, 0.75f, 0.1f, 0.75f, 0.75f, 0.1f }; ssi_real_t test_distr[][3] = { 0.5f, 0.5f, 0.5f }; SampleList strain; SampleList sdevel; SampleList stest; ModelTools::CreateTestSamples(strain, n_classes, n_samples, n_streams, train_distr, "user"); ModelTools::CreateTestSamples(sdevel, n_classes, n_samples, n_streams, train_distr, "user"); ModelTools::CreateTestSamples(stest, 1, n_samples * n_classes, n_streams, test_distr, "user"); ssi_char_t string[SSI_MAX_CHAR]; for (ssi_size_t n_class = 1; n_class < n_classes; n_class++) { ssi_sprint(string, "class%02d", n_class); stest.addClassName(string); } // train svm { SVM *model = ssi_create(SVM, 0, true); model->getOptions()->seed = 1234; Trainer trainer(model); ISNorm::Params params; ISNorm::ZeroParams(params, ISNorm::METHOD::ZSCORE); trainer.setNormalization(¶ms); trainer.train(strain); trainer.save("svm+norm"); } // evaluation { Trainer trainer; Trainer::Load(trainer, "svm+norm"); Evaluation eval; eval.eval(&trainer, sdevel); eval.print(); trainer.cluster(stest); ModelTools::PlotSamples(stest, "svm (external normalization)", ssi_rect(650,0,400,400)); } return true; }
bool ex_model_frame(void *args) { ssi_size_t n_classes = 4; ssi_size_t n_samples = 50; ssi_size_t n_streams = 1; ssi_real_t distr[][3] = { 0.25f, 0.25f, 0.1f, 0.25f, 0.75f, 0.1f, 0.75f, 0.25f, 0.1f, 0.75f, 0.75f, 0.1f }; ssi_size_t num_min = 2; ssi_size_t num_max = 5; SampleList strain, sdevel; ModelTools::CreateDynamicTestSamples(strain, n_classes, n_samples, n_streams, distr, num_min, num_max, "user"); ModelTools::PrintInfo(strain); ModelTools::CreateDynamicTestSamples(sdevel, n_classes, n_samples, n_streams, distr, num_min, num_max, "user"); ModelTools::PrintInfo(sdevel); { FrameFusion *model = ssi_create(FrameFusion, 0, true); model->getOptions()->method = FrameFusion::METHOD::PRODUCT; model->getOptions()->n_context = 2; model->setModel(ssi_create(SVM, 0, true)); Trainer trainer(model); trainer.train(strain); trainer.save("framefusion"); } // evaluation { Trainer trainer; Trainer::Load(trainer, "framefusion"); Evaluation eval; eval.eval(&trainer, sdevel); eval.print(); } return true; }
bool FeatureFusion::train (ssi_size_t n_models, IModel **models, ISamples &samples) { if (samples.getSize () == 0) { ssi_wrn ("empty sample list"); return false; } if (isTrained ()) { ssi_wrn ("already trained"); return false; } _n_streams = samples.getStreamSize (); _n_classes = samples.getClassSize (); _n_models = n_models; //initialize weights ssi_real_t **weights = new ssi_real_t*[n_models]; for (ssi_size_t n_model = 0; n_model < n_models; n_model++) { weights[n_model] = new ssi_real_t[_n_classes+1]; } if (samples.hasMissingData ()) { _handle_md = true; ISMissingData samples_h (&samples); Evaluation eval; if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) { ssi_print("\nMissing data detected.\n"); } //models[0] is featfuse_model, followed by singlechannel_models ISMergeDim ffusionSamples (&samples); ISMissingData ffusionSamples_h (&ffusionSamples); ffusionSamples_h.setStream(0); if (!models[0]->isTrained ()) { models[0]->train (ffusionSamples_h, 0); } if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) { eval.eval (*models[0], ffusionSamples_h, 0); eval.print(); } //dummy weights for fused model for (ssi_size_t n_class = 0; n_class < _n_classes; n_class++) { weights[0][n_class] = 0.0f; } weights[0][_n_classes] = 0.0f; for (ssi_size_t n_model = 1; n_model < n_models; n_model++) { if (!models[n_model]->isTrained ()) { samples_h.setStream (n_model - 1); models[n_model]->train (samples_h, n_model - 1); } eval.eval (*models[n_model], samples_h, n_model - 1); if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) { eval.print(); } for (ssi_size_t n_class = 0; n_class < _n_classes; n_class++) { weights[n_model][n_class] = eval.get_class_prob (n_class); } weights[n_model][_n_classes] = eval.get_classwise_prob (); } //calculate fillers _filler = new ssi_size_t[_n_streams]; for (ssi_size_t n_fill = 0; n_fill < _n_streams; n_fill++) { _filler[n_fill] = 1; ssi_real_t filler_weight = weights[1][_n_classes]; for (ssi_size_t n_model = 2; n_model < n_models; n_model++) { if (filler_weight < weights[n_model][_n_classes]) { _filler[n_fill] = n_model; filler_weight = weights[n_model][_n_classes]; } } weights[_filler[n_fill]][_n_classes] = 0.0f; } if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) { ssi_print("\nfiller:\n"); for (ssi_size_t n_model = 0; n_model < _n_streams; n_model++) { ssi_print("%d ", _filler[n_model]); }ssi_print("\n"); } } else{ _handle_md = false; if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) { ssi_print("\nNo missing data detected.\n"); } ISMergeDim ffusionSamples (&samples); if (!models[0]->isTrained ()) { models[0]->train (ffusionSamples, 0); } //dummy _filler = new ssi_size_t[_n_streams]; for (ssi_size_t n_fill = 0; n_fill < _n_streams; n_fill++) { _filler[n_fill] = 0; } } if (weights) { for (ssi_size_t n_model = 0; n_model < _n_models; n_model++) { delete[] weights[n_model]; } delete[] weights; weights = 0; } return true; }
bool ex_model(void *arg) { Trainer::SetLogLevel (SSI_LOG_LEVEL_DEBUG); ssi_size_t n_classes = 4; ssi_size_t n_samples = 50; ssi_size_t n_streams = 1; ssi_real_t train_distr[][3] = { 0.25f, 0.25f, 0.1f, 0.25f, 0.75f, 0.1f, 0.75f, 0.75f, 0.1f, 0.75f, 0.75f, 0.1f }; ssi_real_t test_distr[][3] = { 0.5f, 0.5f, 0.5f }; SampleList strain; SampleList sdevel; SampleList stest; ModelTools::CreateTestSamples (strain, n_classes, n_samples, n_streams, train_distr, "user"); ModelTools::CreateTestSamples (sdevel, n_classes, n_samples, n_streams, train_distr, "user"); ModelTools::CreateTestSamples (stest, 1, n_samples * n_classes, n_streams, test_distr, "user"); ssi_char_t string[SSI_MAX_CHAR]; for (ssi_size_t n_class = 1; n_class < n_classes; n_class++) { ssi_sprint (string, "class%02d", n_class); stest.addClassName (string); } // train svm { SVM *model = ssi_create(SVM, 0, true); model->getOptions()->seed = 1234; Trainer trainer(model); trainer.train(strain); trainer.save("svm"); } // evaluation { Trainer trainer; Trainer::Load(trainer, "svm"); Evaluation eval; eval.eval(&trainer, sdevel); eval.print(); trainer.cluster(stest); ModelTools::PlotSamples(stest, "svm (internal normalization)", ssi_rect(650, 0, 400, 400)); } // train knn { KNearestNeighbors *model = ssi_create(KNearestNeighbors, 0, true); model->getOptions()->k = 5; //model->getOptions()->distsum = true; Trainer trainer (model); trainer.train (strain); trainer.save ("knn"); } // evaluation { Trainer trainer; Trainer::Load (trainer, "knn"); Evaluation eval; eval.eval (&trainer, sdevel); eval.print (); trainer.cluster (stest); ModelTools::PlotSamples(stest, "knn", ssi_rect(650, 0, 400, 400)); } // train naive bayes { NaiveBayes *model = ssi_create(NaiveBayes, 0, true); model->getOptions()->log = true; Trainer trainer (model); trainer.train (strain); trainer.save ("bayes"); } // evaluation { Trainer trainer; Trainer::Load (trainer, "bayes"); Evaluation eval; eval.eval (&trainer, sdevel); eval.print (); trainer.cluster (stest); ModelTools::PlotSamples(stest, "bayes", ssi_rect(650, 0, 400, 400)); } // training { LDA *model = ssi_create(LDA, "lda", true); Trainer trainer (model); trainer.train (strain); model->print(); trainer.save ("lda"); } // evaluation { Trainer trainer; Trainer::Load (trainer, "lda"); Evaluation eval; eval.eval (&trainer, sdevel); eval.print (); trainer.cluster (stest); ModelTools::PlotSamples(stest, "lda", ssi_rect(650, 0, 400, 400)); } ssi_print ("\n\n\tpress a key to contiue\n"); getchar (); return true; }
bool ex_eval(void *arg) { ssi_size_t n_classes = 2; ssi_size_t n_samples = 20; ssi_size_t n_streams = 1; ssi_real_t train_distr[][3] = { 0.3f, 0.3f, 0.2f, 0.3f, 0.6f, 0.2f, 0.6f, 0.3f, 0.2f, 0.6f, 0.6f, 0.2f }; ssi_real_t test_distr[][3] = { 0.5f, 0.5f, 0.5f }; SampleList samples; ModelTools::CreateTestSamples (samples, n_classes, n_samples, n_streams, train_distr); ssi_char_t string[SSI_MAX_CHAR]; for (ssi_size_t n_class = 1; n_class < n_classes; n_class++) { ssi_sprint (string, "class%02d", n_class); samples.addClassName (string); } Evaluation eval; NaiveBayes *model = ssi_create (NaiveBayes, 0, true); Trainer trainer (model); trainer.train (samples); Evaluation2Latex e2latex; e2latex.open ("eval.tex"); ssi_print_off ("devel set:\n"); eval.eval (&trainer, samples); eval.print (ssiout); eval.print_result_vec (); e2latex.writeHead (eval, "caption", "label"); e2latex.writeText ("results with different evaluation strategies", true); e2latex.writeEval ("devel", eval); ssi_print_off("k-fold:\n"); eval.evalKFold (&trainer, samples, 3); eval.print (); eval.print_result_vec (); e2latex.writeEval ("k-fold", eval); ssi_print_off("split:\n"); eval.evalSplit (&trainer, samples, 0.5f); eval.print (); eval.print_result_vec (); e2latex.writeEval ("split", eval); ssi_print_off("loo:\n"); eval.evalLOO (&trainer, samples); eval.print (); eval.print_result_vec (); e2latex.writeEval ("loo", eval); e2latex.writeTail (); e2latex.close (); FILE *fp = fopen("eval.csv", "w"); eval.print(fp, Evaluation::PRINT::CSV_EX); fclose(fp); return true; }