Пример #1
0
static bool CheckNakedParmReference(Expr *E, Sema &S) {
  FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
  if (!Func)
    return false;
  if (!Func->hasAttr<NakedAttr>())
    return false;

  SmallVector<Expr*, 4> WorkList;
  WorkList.push_back(E);
  while (WorkList.size()) {
    Expr *E = WorkList.pop_back_val();
    if (isa<CXXThisExpr>(E)) {
      S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref);
      S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
      return true;
    }
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
      if (isa<ParmVarDecl>(DRE->getDecl())) {
        S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref);
        S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
        return true;
      }
    }
    for (Stmt *Child : E->children()) {
      if (Expr *E = dyn_cast_or_null<Expr>(Child))
        WorkList.push_back(E);
    }
  }
  return false;
}
Пример #2
0
  bool rightHandOperatorHasSideEffect(const BinaryOperator *S) {
    if (doIgnore(S->getLocStart())) {
      return true;
    }

    Expr *rightHandExpr = S->getRHS();
    if (rightHandExpr->HasSideEffects(*context)) {
      reportError(rightHandExpr->getLocStart());
    }
    return true;
  }
Пример #3
0
void Inliner::VisitBinaryOperator(BinaryOperator * node) {
    Expr * lhs = node->getLHS(), * rhs = node->getRHS();
    CallExpr * call = dyn_cast<CallExpr>(rhs);
    if (call && call->getDirectCallee()->isThisDeclarationADefinition()) { // replace: x = foo(y); with: /*x = */ { //inlined foo }
        Rewriter &rewriter = (current_func_->isMain()) ? main_rewriter_ : rewriter_;
        rewriter.InsertText(lhs->getLocStart(),"/*");
        rewriter.InsertText(rhs->getLocStart(),"*/"); 
    }
    return_vars_.push_back(Utils::PrintStmt(lhs,contex_));
    VisitChildren(node);
    return_vars_.pop_back();
}
Пример #4
0
bool ParseFunctionCall(FunctionEvent *Event, BinaryOperator *Bop,
                       vector<ValueDecl*>& References,
                       ASTContext& Ctx) {

  // TODO: better distinguishing between callee and/or caller
  Event->set_context(FunctionEvent::Callee);

  // Since we might care about the return value, we must instrument exiting
  // the function rather than entering it.
  Event->set_direction(FunctionEvent::Exit);

  Expr *LHS = Bop->getLHS();
  bool LHSisICE = LHS->isIntegerConstantExpr(Ctx);

  Expr *RHS = Bop->getRHS();

  if (!(LHSisICE ^ RHS->isIntegerConstantExpr(Ctx))) {
    Report("One of {LHS,RHS} must be ICE", Bop->getLocStart(), Ctx)
      << Bop->getSourceRange();
    return false;
  }

  Expr *RetVal = (LHSisICE ? LHS : RHS);
  Expr *FnCall = (LHSisICE ? RHS : LHS);
  if (!ParseArgument(Event->mutable_expectedreturnvalue(), RetVal, References,
                     Ctx))
    return false;

  auto FnCallExpr = dyn_cast<CallExpr>(FnCall);
  if (!FnCallExpr) {
    Report("Not a function call", FnCall->getLocStart(), Ctx)
      << FnCall->getSourceRange();
    return false;
  }

  auto Fn = FnCallExpr->getDirectCallee();
  if (!Fn) {
    Report("Not a direct function call", FnCallExpr->getLocStart(), Ctx)
      << FnCallExpr->getSourceRange();
    return false;
  }

  if (!ParseFunctionRef(Event->mutable_function(), Fn, Ctx)) return false;

  for (auto I = FnCallExpr->arg_begin(); I != FnCallExpr->arg_end(); ++I) {
    if (!ParseArgument(Event->add_argument(), I->IgnoreImplicit(), References,
                       Ctx))
      return false;
  }

  return true;
}
std::vector<FixItHint> Qt4_QStringFromArray::fixitInsertFromLatin1(CXXConstructExpr *ctorExpr)
{
    vector<FixItHint> fixits;
    SourceRange range;

    Expr *arg = *(ctorExpr->arg_begin());
    range.setBegin(arg->getLocStart());
    range.setEnd(Lexer::getLocForEndOfToken(FixItUtils::biggestSourceLocationInStmt(sm(), ctorExpr), 0, sm(), lo()));
    if (range.isInvalid()) {
        emitWarning(ctorExpr->getLocStart(), "Internal error");
        return {};
    }

    FixItUtils::insertParentMethodCall("QString::fromLatin1", range, fixits);

    return fixits;
}
 NodeContext VisitCallExpr(CallExpr* CE) {
   FunctionDecl* FDecl = CE->getDirectCallee();
   NodeContext result(CE);
   if (FDecl && isDeclCandidate(FDecl)) {
     decl_map_t::const_iterator it = m_NonNullArgIndexs.find(FDecl);
     const std::bitset<32>& ArgIndexs = it->second;
     Sema::ContextRAII pushedDC(m_Sema, FDecl);
     for (int index = 0; index < 32; ++index) {
       if (ArgIndexs.test(index)) {
         // Get the argument with the nonnull attribute.
         Expr* Arg = CE->getArg(index);
         result.prepend(SynthesizeCheck(Arg->getLocStart(), Arg));
       }
     }
   }
   return result;
 }
std::vector<FixItHint> Qt4_QStringFromArray::fixMethodCallCall(clang::CXXMemberCallExpr *memberExpr)
{
    vector<FixItHint> fixits;

    if (memberExpr->getNumArgs() == 1) {
        Expr *e = *(memberExpr->arg_begin());
        SourceLocation start = e->getLocStart();
        SourceLocation end = Lexer::getLocForEndOfToken(FixItUtils::biggestSourceLocationInStmt(sm(), e), 0, sm(), lo());

        SourceRange range = { start, end };
        if (range.isInvalid()) {
            emitWarning(memberExpr->getLocStart(), "internal error");
            return {};
        }

        FixItUtils::insertParentMethodCall("QString::fromLatin1", {start, end}, /*by-ref*/fixits);
    } else {
        emitWarning(memberExpr->getLocStart(), "internal error");
    }


    return fixits;
}
Пример #8
0
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                                 bool IsVolatile, unsigned NumOutputs,
                                 unsigned NumInputs, IdentifierInfo **Names,
                                 MultiExprArg constraints, MultiExprArg Exprs,
                                 Expr *asmString, MultiExprArg clobbers,
                                 SourceLocation RParenLoc) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.data());
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  if (!AsmString->isAscii())
    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
      << AsmString->getSourceRange());

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (!Context.getTargetInfo().validateOutputConstraint(Info))
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_output_constraint)
                       << Info.getConstraintStr());

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];
    if (CheckAsmLValue(OutputExpr, *this))
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_lvalue_in_output)
                       << OutputExpr->getSourceRange());

    if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
                            diag::err_dereference_incomplete_type))
      return StmtError();

    OutputConstraintInfos.push_back(Info);
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
                                                NumOutputs, Info)) {
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_input_constraint)
                       << Info.getConstraintStr());
    }

    Expr *InputExpr = Exprs[i];

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    } else {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
      if (Result.isInvalid())
        return StmtError();

      Exprs[i] = Result.get();
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << Info.getConstraintStr()
          << InputExpr->getSourceRange());
      }
    }

    InputConstraintInfos.push_back(Info);

    const Type *Ty = Exprs[i]->getType().getTypePtr();
    if (Ty->isDependentType())
      continue;

    if (!Ty->isVoidType() || !Info.allowsMemory())
      if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
                                                   Size))
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_invalid_input_size)
                       << Info.getConstraintStr());
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber))
      return StmtError(Diag(Literal->getLocStart(),
                  diag::err_asm_unknown_register_name) << Clobber);
  }

  GCCAsmStmt *NS =
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                             NumInputs, Names, Constraints, Exprs.data(),
                             AsmString, NumClobbers, Clobbers, RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
           << AsmString->getSourceRange();
    return StmtError();
  }

  // Validate constraints and modifiers.
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
    if (!Piece.isOperand()) continue;

    // Look for the correct constraint index.
    unsigned Idx = 0;
    unsigned ConstraintIdx = 0;
    for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) {
      TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
      if (Idx == Piece.getOperandNo())
        break;
      ++Idx;

      if (Info.isReadWrite()) {
        if (Idx == Piece.getOperandNo())
          break;
        ++Idx;
      }
    }

    for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) {
      TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
      if (Idx == Piece.getOperandNo())
        break;
      ++Idx;

      if (Info.isReadWrite()) {
        if (Idx == Piece.getOperandNo())
          break;
        ++Idx;
      }
    }

    // Now that we have the right indexes go ahead and check.
    StringLiteral *Literal = Constraints[ConstraintIdx];
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
    if (Ty->isDependentType() || Ty->isIncompleteType())
      continue;

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo()
          .validateConstraintModifier(Literal->getString(), Piece.getModifier(),
                                      Size))
      Diag(Exprs[ConstraintIdx]->getLocStart(),
           diag::warn_asm_mismatched_size_modifier);
  }

  // Validate tied input operands for type mismatches.
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;

    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }

    Diag(InputExpr->getLocStart(),
         diag::err_asm_tying_incompatible_types)
      << InTy << OutTy << OutputExpr->getSourceRange()
      << InputExpr->getSourceRange();
    return StmtError();
  }

  return NS;
}
Пример #9
0
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                                 bool IsVolatile, unsigned NumOutputs,
                                 unsigned NumInputs, IdentifierInfo **Names,
                                 MultiExprArg constraints, MultiExprArg Exprs,
                                 Expr *asmString, MultiExprArg clobbers,
                                 SourceLocation RParenLoc) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.data());
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  assert(AsmString->isAscii());

  bool ValidateConstraints =
      DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl());

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (ValidateConstraints &&
        !Context.getTargetInfo().validateOutputConstraint(Info))
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_output_constraint)
                       << Info.getConstraintStr());

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(OutputExpr, *this))
      return StmtError();

    // Bitfield can't be referenced with a pointer.
    if (Info.allowsMemory() && OutputExpr->refersToBitField())
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_bitfield_in_memory_constraint)
                       << 1
                       << Info.getConstraintStr()
                       << OutputExpr->getSourceRange());

    OutputConstraintInfos.push_back(Info);

    // If this is dependent, just continue.
    if (OutputExpr->isTypeDependent())
      continue;

    Expr::isModifiableLvalueResult IsLV =
        OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
    switch (IsLV) {
    case Expr::MLV_Valid:
      // Cool, this is an lvalue.
      break;
    case Expr::MLV_ArrayType:
      // This is OK too.
      break;
    case Expr::MLV_LValueCast: {
      const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
      if (!getLangOpts().HeinousExtensions) {
        Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
            << OutputExpr->getSourceRange();
      } else {
        Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
            << OutputExpr->getSourceRange();
      }
      // Accept, even if we emitted an error diagnostic.
      break;
    }
    case Expr::MLV_IncompleteType:
    case Expr::MLV_IncompleteVoidType:
      if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();
    default:
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_lvalue_in_output)
                       << OutputExpr->getSourceRange());
    }

    unsigned Size = Context.getTypeSize(OutputExpr->getType());
    if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
                                                    Size))
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_output_size)
                       << Info.getConstraintStr());
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (ValidateConstraints &&
        !Context.getTargetInfo().validateInputConstraint(
            OutputConstraintInfos.data(), NumOutputs, Info)) {
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_input_constraint)
                       << Info.getConstraintStr());
    }

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    Expr *InputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(InputExpr, *this))
      return StmtError();

    // Bitfield can't be referenced with a pointer.
    if (Info.allowsMemory() && InputExpr->refersToBitField())
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_bitfield_in_memory_constraint)
                       << 0
                       << Info.getConstraintStr()
                       << InputExpr->getSourceRange());

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
      if (!InputExpr->isValueDependent()) {
        llvm::APSInt Result;
        if (!InputExpr->EvaluateAsInt(Result, Context))
           return StmtError(
               Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
                << Info.getConstraintStr() << InputExpr->getSourceRange());
         if (!Info.isValidAsmImmediate(Result))
           return StmtError(Diag(InputExpr->getLocStart(),
                                 diag::err_invalid_asm_value_for_constraint)
                            << Result.toString(10) << Info.getConstraintStr()
                            << InputExpr->getSourceRange());
      }

    } else {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
      if (Result.isInvalid())
        return StmtError();

      Exprs[i] = Result.get();
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << Info.getConstraintStr()
          << InputExpr->getSourceRange());
      }
    }

    InputConstraintInfos.push_back(Info);

    const Type *Ty = Exprs[i]->getType().getTypePtr();
    if (Ty->isDependentType())
      continue;

    if (!Ty->isVoidType() || !Info.allowsMemory())
      if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
                                                   Size))
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_invalid_input_size)
                       << Info.getConstraintStr());
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    assert(Literal->isAscii());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber))
      return StmtError(Diag(Literal->getLocStart(),
                  diag::err_asm_unknown_register_name) << Clobber);
  }

  GCCAsmStmt *NS =
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                             NumInputs, Names, Constraints, Exprs.data(),
                             AsmString, NumClobbers, Clobbers, RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
           << AsmString->getSourceRange();
    return StmtError();
  }

  // Validate constraints and modifiers.
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
    if (!Piece.isOperand()) continue;

    // Look for the correct constraint index.
    unsigned ConstraintIdx = Piece.getOperandNo();
    unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();

    // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
    // modifier '+'.
    if (ConstraintIdx >= NumOperands) {
      unsigned I = 0, E = NS->getNumOutputs();

      for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
        if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
          ConstraintIdx = I;
          break;
        }

      assert(I != E && "Invalid operand number should have been caught in "
                       " AnalyzeAsmString");
    }

    // Now that we have the right indexes go ahead and check.
    StringLiteral *Literal = Constraints[ConstraintIdx];
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
    if (Ty->isDependentType() || Ty->isIncompleteType())
      continue;

    unsigned Size = Context.getTypeSize(Ty);
    std::string SuggestedModifier;
    if (!Context.getTargetInfo().validateConstraintModifier(
            Literal->getString(), Piece.getModifier(), Size,
            SuggestedModifier)) {
      Diag(Exprs[ConstraintIdx]->getLocStart(),
           diag::warn_asm_mismatched_size_modifier);

      if (!SuggestedModifier.empty()) {
        auto B = Diag(Piece.getRange().getBegin(),
                      diag::note_asm_missing_constraint_modifier)
                 << SuggestedModifier;
        SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
        B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
                                                    SuggestedModifier));
      }
    }
  }

  // Validate tied input operands for type mismatches.
  unsigned NumAlternatives = ~0U;
  for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U)
      NumAlternatives = AltCount;
    else if (NumAlternatives != AltCount)
      return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
                            diag::err_asm_unexpected_constraint_alternatives)
                       << NumAlternatives << AltCount);
  }
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U)
      NumAlternatives = AltCount;
    else if (NumAlternatives != AltCount)
      return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
                            diag::err_asm_unexpected_constraint_alternatives)
                       << NumAlternatives << AltCount);

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;

    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }

    Diag(InputExpr->getLocStart(),
         diag::err_asm_tying_incompatible_types)
      << InTy << OutTy << OutputExpr->getSourceRange()
      << InputExpr->getSourceRange();
    return StmtError();
  }

  return NS;
}
Пример #10
0
/// \brief Build an Objective-C instance message expression.
///
/// This routine takes care of both normal instance messages and
/// instance messages to the superclass instance.
///
/// \param Receiver The expression that computes the object that will
/// receive this message. This may be empty, in which case we are
/// sending to the superclass instance and \p SuperLoc must be a valid
/// source location.
///
/// \param ReceiverType The (static) type of the object receiving the
/// message. When a \p Receiver expression is provided, this is the
/// same type as that expression. For a superclass instance send, this
/// is a pointer to the type of the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass instance message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this instance message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBrac The location of the closing square bracket ']'.
///
/// \param Args The message arguments.
Sema::OwningExprResult Sema::BuildInstanceMessage(ExprArg ReceiverE,
                                                  QualType ReceiverType,
                                                  SourceLocation SuperLoc,
                                                  Selector Sel,
                                                  ObjCMethodDecl *Method,
                                                  SourceLocation LBracLoc, 
                                                  SourceLocation RBracLoc,
                                                  MultiExprArg ArgsIn) {
  // If we have a receiver expression, perform appropriate promotions
  // and determine receiver type.
  Expr *Receiver = ReceiverE.takeAs<Expr>();
  if (Receiver) {
    if (Receiver->isTypeDependent()) {
      // If the receiver is type-dependent, we can't type-check anything
      // at this point. Build a dependent expression.
      unsigned NumArgs = ArgsIn.size();
      Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
      assert(SuperLoc.isInvalid() && "Message to super with dependent type");
      return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy,
                                           LBracLoc, Receiver, Sel, 
                                           /*Method=*/0, Args, NumArgs, 
                                           RBracLoc));
    }

    // If necessary, apply function/array conversion to the receiver.
    // C99 6.7.5.3p[7,8].
    DefaultFunctionArrayLvalueConversion(Receiver);
    ReceiverType = Receiver->getType();
  }

  // The location of the receiver.
  SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();

  if (!Method) {
    // Handle messages to id.
    bool receiverIsId = ReceiverType->isObjCIdType();
    if (receiverIsId || ReceiverType->isBlockPointerType() ||
        (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
      Method = LookupInstanceMethodInGlobalPool(Sel, 
                                                SourceRange(LBracLoc, RBracLoc),
                                                receiverIsId);
      if (!Method)
        Method = LookupFactoryMethodInGlobalPool(Sel, 
                                                 SourceRange(LBracLoc, RBracLoc),
                                                 receiverIsId);
    } else if (ReceiverType->isObjCClassType() ||
               ReceiverType->isObjCQualifiedClassType()) {
      // Handle messages to Class.
      if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
          // First check the public methods in the class interface.
          Method = ClassDecl->lookupClassMethod(Sel);

          if (!Method)
            Method = LookupPrivateClassMethod(Sel, ClassDecl);

          // FIXME: if we still haven't found a method, we need to look in
          // protocols (if we have qualifiers).
        }
        if (Method && DiagnoseUseOfDecl(Method, Loc))
          return ExprError();
      }
      if (!Method) {
        // If not messaging 'self', look for any factory method named 'Sel'.
        if (!Receiver || !isSelfExpr(Receiver)) {
          Method = LookupFactoryMethodInGlobalPool(Sel, 
                                               SourceRange(LBracLoc, RBracLoc),
                                                   true);
          if (!Method) {
            // If no class (factory) method was found, check if an _instance_
            // method of the same name exists in the root class only.
            Method = LookupInstanceMethodInGlobalPool(Sel,
                                               SourceRange(LBracLoc, RBracLoc),
                                                      true);
            if (Method)
                if (const ObjCInterfaceDecl *ID =
                  dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
                if (ID->getSuperClass())
                  Diag(Loc, diag::warn_root_inst_method_not_found)
                    << Sel << SourceRange(LBracLoc, RBracLoc);
              }
          }
        }
      }
    } else {
      ObjCInterfaceDecl* ClassDecl = 0;

      // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
      // long as one of the protocols implements the selector (if not, warn).
      if (const ObjCObjectPointerType *QIdTy 
                                   = ReceiverType->getAsObjCQualifiedIdType()) {
        // Search protocols for instance methods.
        for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
               E = QIdTy->qual_end(); I != E; ++I) {
          ObjCProtocolDecl *PDecl = *I;
          if (PDecl && (Method = PDecl->lookupInstanceMethod(Sel)))
            break;
          // Since we aren't supporting "Class<foo>", look for a class method.
          if (PDecl && (Method = PDecl->lookupClassMethod(Sel)))
            break;
        }
      } else if (const ObjCObjectPointerType *OCIType
                   = ReceiverType->getAsObjCInterfacePointerType()) {
        // We allow sending a message to a pointer to an interface (an object).
        ClassDecl = OCIType->getInterfaceDecl();
        // FIXME: consider using LookupInstanceMethodInGlobalPool, since it will be
        // faster than the following method (which can do *many* linear searches).
        // The idea is to add class info to MethodPool.
        Method = ClassDecl->lookupInstanceMethod(Sel);

        if (!Method) {
          // Search protocol qualifiers.
          for (ObjCObjectPointerType::qual_iterator QI = OCIType->qual_begin(),
                 E = OCIType->qual_end(); QI != E; ++QI) {
            if ((Method = (*QI)->lookupInstanceMethod(Sel)))
              break;
          }
        }
        if (!Method) {
          // If we have implementations in scope, check "private" methods.
          Method = LookupPrivateInstanceMethod(Sel, ClassDecl);

          if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
            // If we still haven't found a method, look in the global pool. This
            // behavior isn't very desirable, however we need it for GCC
            // compatibility. FIXME: should we deviate??
            if (OCIType->qual_empty()) {
              Method = LookupInstanceMethodInGlobalPool(Sel,
                                                 SourceRange(LBracLoc, RBracLoc)); 
              if (Method && !OCIType->getInterfaceDecl()->isForwardDecl())
                Diag(Loc, diag::warn_maynot_respond)
                  << OCIType->getInterfaceDecl()->getIdentifier() << Sel;
            }
          }
        }
        if (Method && DiagnoseUseOfDecl(Method, Loc))
          return ExprError();
      } else if (!Context.getObjCIdType().isNull() &&
                 (ReceiverType->isPointerType() || 
                  ReceiverType->isIntegerType())) {
        // Implicitly convert integers and pointers to 'id' but emit a warning.
        Diag(Loc, diag::warn_bad_receiver_type)
          << ReceiverType 
          << Receiver->getSourceRange();
        if (ReceiverType->isPointerType())
          ImpCastExprToType(Receiver, Context.getObjCIdType(), 
                            CastExpr::CK_BitCast);
        else
          ImpCastExprToType(Receiver, Context.getObjCIdType(),
                            CastExpr::CK_IntegralToPointer);
        ReceiverType = Receiver->getType();
      } 
      else if (getLangOptions().CPlusPlus &&
               !PerformContextuallyConvertToObjCId(Receiver)) {
        if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Receiver)) {
          Receiver = ICE->getSubExpr();
          ReceiverType = Receiver->getType();
        }
        return BuildInstanceMessage(Owned(Receiver),
                                    ReceiverType,
                                    SuperLoc,
                                    Sel,
                                    Method,
                                    LBracLoc, 
                                    RBracLoc,
                                    move(ArgsIn));
      } else {
        // Reject other random receiver types (e.g. structs).
        Diag(Loc, diag::err_bad_receiver_type)
          << ReceiverType << Receiver->getSourceRange();
        return ExprError();
      }
    }
  }

  // Check the message arguments.
  unsigned NumArgs = ArgsIn.size();
  Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
  QualType ReturnType;
  if (CheckMessageArgumentTypes(Args, NumArgs, Sel, Method, false,
                                LBracLoc, RBracLoc, ReturnType))
    return ExprError();
  
  if (!ReturnType->isVoidType()) {
    if (RequireCompleteType(LBracLoc, ReturnType, 
                            diag::err_illegal_message_expr_incomplete_type))
      return ExprError();
  }

  // Construct the appropriate ObjCMessageExpr instance.
  Expr *Result;
  if (SuperLoc.isValid())
    Result = ObjCMessageExpr::Create(Context, ReturnType, LBracLoc,
                                     SuperLoc,  /*IsInstanceSuper=*/true,
                                     ReceiverType, Sel, Method, 
                                     Args, NumArgs, RBracLoc);
  else
    Result = ObjCMessageExpr::Create(Context, ReturnType, LBracLoc, Receiver, 
                                     Sel, Method, Args, NumArgs, RBracLoc);
  return MaybeBindToTemporary(Result);
}