Пример #1
1
void ASpawnEnemy::SpawnRandomEnemy()
{
	TArray<FString> Parsed;
	TArray<FString> HowMuch;
	TArray<FString> TypeEnemy;
	const TCHAR* Delims[] = { TEXT(":"), TEXT(";") };

	float RandomNumber = (float)rand() / (float)RAND_MAX;
	int SetNumber = RandomNumber * (Enemies.Num());

	Enemies[SetNumber].ParseIntoArray(&Parsed, Delims, 2);

	int SizeOfArrayParsed = Parsed.Num() - 1;

	for (int x = 0; x <= SizeOfArrayParsed; x = x + 2) {
		HowMuch.Add(Parsed[x]);
	}
	for (int x = 1; x <= SizeOfArrayParsed; x = x + 2) {
		TypeEnemy.Add(Parsed[x]);
	}
	
	for (auto Itr(HowMuch.CreateIterator()); Itr; Itr++) {
		APawn* NewPawn = NULL;
		FVector BoxOnWorld = GetActorLocation();
		FRotator RotatorBoxOnWorld = GetActorRotation();
		FBox BoxInfo = GetComponentsBoundingBox();
		FVector BoxSize = BoxInfo.GetSize();

		if (TypeEnemy[Itr.GetIndex()] == "PegEnemyLight") 
		{
			EnemyClass = PegLightEnemyClass;
		}
		else if (TypeEnemy[Itr.GetIndex()] == "PegDarkEnemy") {
			EnemyClass = PegDarkEnemyClass;
		}
		else if (TypeEnemy[Itr.GetIndex()] == "GarbageEnemy") {
			EnemyClass = GarbageEnemyClass;
		}
		else if (TypeEnemy[Itr.GetIndex()] == "MeleeBookEnemy") {
			EnemyClass = MeleeBookEnemyClass;
		}
		else if (TypeEnemy[Itr.GetIndex()] == "RangeBookEnemy") {
			EnemyClass = RangeBookEnemyClass;
		}
		else if (TypeEnemy[Itr.GetIndex()] == "PianoChargeEnemy") {
			EnemyClass = PianoEnemyClass;
		}
		else if (TypeEnemy[Itr.GetIndex()] == "BarrelChargeEnemy") {
			EnemyClass = BarrelEnemyClass;
		}
		else if (TypeEnemy[Itr.GetIndex()] == "FridgeChargeEnemy") {
			EnemyClass = FridgeEnemyClass;
		}

		if (GetWorld())
		{
			int32 MyShinyNewInt = FCString::Atoi(*HowMuch[Itr.GetIndex()]);
			for (int x = 1; x <= MyShinyNewInt; x++) {

				float random = (float)rand() / (float)RAND_MAX;
				float randomy = (float)rand() / (float)RAND_MAX;

				int xValue = 1 + random * ((3) - (1));
				int yValue = 1 + randomy * ((3) - (1));

				float z, y;

				if (xValue == 1)
					z = random * (0 + (BoxSize[0] / 2));
				else
					z = random * (0 - (BoxSize[0] / 2));
				if (yValue == 1)
					y = random * (0 + (BoxSize[1] / 2));
				else
					y = random * (0 - (BoxSize[1] / 2));

				BoxOnWorld[0] += z;
				BoxOnWorld[1] += y;

				if (ShouldSpawnEnemies)
				{
					if (BoxInfo.IsInside(BoxOnWorld))
					{
						NewPawn = GetWorld()->SpawnActor<AAI_BasicEnemy>(EnemyClass, BoxOnWorld, RotatorBoxOnWorld);
						FVector BoxOnWorld = GetActorLocation();
						if (NewPawn != NULL)
						{
							if (NewPawn->Controller == NULL)
							{
								NewPawn->SpawnDefaultController();
							}
							if (BehaviorTree != NULL)
							{
								AAIController* AIController = Cast<AAIController>(NewPawn->Controller);
								if (AIController != NULL)
								{
									AIController->RunBehaviorTree(BehaviorTree);
								}
							}
						}

						//AI Direct laten aanvallen wanneer die spawnt!
						AAI_BasicController* Controller = (AAI_BasicController*)NewPawn->GetController();
						Controller->FoundPlayer();
						Controller->AISetAttackState();
					}
				}
			}
		}
	}
	EnemyClass = NULL;
	APawn* NewPawn = NULL;
}
Пример #2
0
bool UBillboardComponent::ComponentIsTouchingSelectionBox(const FBox& InSelBBox, const FEngineShowFlags& ShowFlags, const bool bConsiderOnlyBSP, const bool bMustEncompassEntireComponent) const
{
	AActor* Actor = GetOwner();

	if (!bConsiderOnlyBSP && ShowFlags.BillboardSprites && Sprite != nullptr && Actor != nullptr)
	{
		const float Scale = ComponentToWorld.GetMaximumAxisScale();

		// Construct a box representing the sprite
		const FBox SpriteBox(
			Actor->GetActorLocation() - Scale * FMath::Max(Sprite->GetSizeX(), Sprite->GetSizeY()) * FVector(0.5f, 0.5f, 0.5f),
			Actor->GetActorLocation() + Scale * FMath::Max(Sprite->GetSizeX(), Sprite->GetSizeY()) * FVector(0.5f, 0.5f, 0.5f));

		// If the selection box doesn't have to encompass the entire component and it intersects with the box constructed for the sprite, then it is valid.
		// Additionally, if the selection box does have to encompass the entire component and both the min and max vectors of the sprite box are inside the selection box,
		// then it is valid.
		if ((!bMustEncompassEntireComponent && InSelBBox.Intersect(SpriteBox))
			|| (bMustEncompassEntireComponent && InSelBBox.IsInside(SpriteBox)))
		{
			return true;
		}
	}

	return false;
}
void UParticleModuleCollision::Update(FParticleEmitterInstance* Owner, int32 Offset, float DeltaTime)
{
	SCOPE_CYCLE_COUNTER(STAT_ParticleCollisionTime);
	check(Owner);
	check(Owner->Component);
	UWorld* World = Owner->Component->GetWorld();
	if (Owner->ActiveParticles == 0 || (bDropDetail && World && World->bDropDetail))
	{
		return;
	}

	//Gets the owning actor of the component. Can be NULL if the component is spawned with the World as an Outer, e.g. in UGameplayStatics::SpawnEmitterAtLocation().
	AActor* Actor = Owner->Component->GetOwner();

	UParticleLODLevel* LODLevel	= Owner->SpriteTemplate->GetCurrentLODLevel(Owner);
	check(LODLevel);

	const int32 MeshRotationOffset = Owner->GetMeshRotationOffset();
	const bool bMeshRotationActive = Owner->IsMeshRotationActive();

	const FTransform& OwnerTM = Owner->Component->GetAsyncComponentToWorld();
	const FVector ParentScale = OwnerTM.GetScale3D();

	FParticleEventInstancePayload* EventPayload = NULL;
	if (LODLevel->EventGenerator)
	{
		EventPayload = (FParticleEventInstancePayload*)(Owner->GetModuleInstanceData(LODLevel->EventGenerator));
		if (EventPayload && 
			(EventPayload->bCollisionEventsPresent == false) && 
			(EventPayload->bDeathEventsPresent == false))
		{
			EventPayload = NULL;
		}
	}

	FParticleCollisionInstancePayload* CollisionInstPayload = (FParticleCollisionInstancePayload*)(Owner->GetModuleInstanceData(this));

	const TArray<FVector>& PlayerLocations = Owner->Component->GetPlayerLocations();
	TArray<float> PlayerLODDistanceFactor = Owner->Component->GetPlayerLODDistanceFactor();	//Make a copy because we need to square it later
	const int32 PlayerCount = PlayerLocations.Num();

	if (World->IsGameWorld())
	{
		bool bIgnoreAllCollision = false;

		// LOD collision based on visibility
		// This is at the 'emitter instance' level as it will be true or false for the whole instance...
		if (bCollideOnlyIfVisible && ((World->TimeSeconds - Owner->Component->LastRenderTime) > 0.1f))
		{
			// no collision if not recently rendered
			bIgnoreAllCollision = true;
		}
		else
		{
			// If the MaxCollisionDistance is greater than WORLD_MAX, they obviously want the check disabled...
			if (MaxCollisionDistance < WORLD_MAX)
			{
				// If we have at least a few particles, do a simple check vs. the bounds
				if (Owner->ActiveParticles > 7)
				{
					if (CollisionInstPayload->CurrentLODBoundsCheckCount == 0)
					{
						FBox BoundingBox;
						BoundingBox.Init();
						if (Owner->Component->Template && Owner->Component->Template->bUseFixedRelativeBoundingBox)
						{
							BoundingBox = Owner->Component->Template->FixedRelativeBoundingBox.TransformBy(OwnerTM);
						}
						else
						{
							// A frame behind, but shouldn't be an issue...
							BoundingBox = Owner->Component->GetAsyncBounds().GetBox();
						}

						// see if any player is within the extended bounds...
						bIgnoreAllCollision = true;
						// Check for the system itself beyond beyond the bounds
						// LOD collision by distance
						bool bCloseEnough = false;
						for (int32 PlyrIdx = 0; PlyrIdx < PlayerCount; PlyrIdx++)
						{
							// Invert the LOD distance factor here because we are using it to *expand* the 
							// bounds rather than shorten the distance checked as it is usually used for.
							float InvDistanceFactor = 1.0f / PlayerLODDistanceFactor[PlyrIdx];
							FBox CheckBounds = BoundingBox;
							float BoxExpansionValue = MaxCollisionDistance * InvDistanceFactor;
							BoxExpansionValue += BoxExpansionValue * 0.075f;
							// Expand it by the max collision distance (and a little bit extra)
							CheckBounds = CheckBounds.ExpandBy(BoxExpansionValue);
							if (CheckBounds.IsInside(PlayerLocations[PlyrIdx]))
							{
								// If one is close enough, that's all it takes!
								bCloseEnough = true;
								break;
							}
						}
						if (bCloseEnough == true)
						{
							bIgnoreAllCollision = false;
						}
					}
					CollisionInstPayload->CurrentLODBoundsCheckCount++;
					// Every 30 frames recheck the overall bounds...
					if (CollisionInstPayload->CurrentLODBoundsCheckCount > 30)
					{
						CollisionInstPayload->CurrentLODBoundsCheckCount = 0;
					}
				}
			}
		}

		if (bIgnoreAllCollision == true)
		{
			// Turn off collision on *all* existing particles...
			// We don't want it to turn back on and have particles 
			// already embedded start performing collision checks.
			BEGIN_UPDATE_LOOP;
			{
				Particle.Flags |= STATE_Particle_IgnoreCollisions;
			}
			END_UPDATE_LOOP;
			return;
		}

		// Square the LODDistanceFactor values now, so we don't have to do it
		// per particle in the update loop below...
		for (int32 SquareIdx = 0; SquareIdx < PlayerLocations.Num(); SquareIdx++)
		{
			PlayerLODDistanceFactor[SquareIdx] *= PlayerLODDistanceFactor[SquareIdx];
		}
	}

	float SquaredMaxCollisionDistance = FMath::Square(MaxCollisionDistance);
	BEGIN_UPDATE_LOOP;
	{
		if ((Particle.Flags & STATE_Particle_CollisionIgnoreCheck) != 0)
		{
			CONTINUE_UPDATE_LOOP;
		}

		PARTICLE_ELEMENT(FParticleCollisionPayload, CollisionPayload);
		if ((Particle.Flags & STATE_Particle_DelayCollisions) != 0)
		{
			if (CollisionPayload.Delay > Particle.RelativeTime)
			{
				CONTINUE_UPDATE_LOOP;
			}
			Particle.Flags &= ~STATE_Particle_DelayCollisions;
		}

		FVector			Location;
		FVector			OldLocation;

		// Location won't be calculated till after tick so we need to calculate an intermediate one here.
		Location	= Particle.Location + Particle.Velocity * DeltaTime;
		if (LODLevel->RequiredModule->bUseLocalSpace)
		{
			// Transform the location and old location into world space
			Location		= OwnerTM.TransformPosition(Location);
			OldLocation		= OwnerTM.TransformPosition(Particle.OldLocation);
		}
		else
		{
			OldLocation	= Particle.OldLocation;
		}
		FVector	Direction = (Location - OldLocation).GetSafeNormal();

		// Determine the size
		FVector Size = Particle.Size * ParentScale;
		FVector	Extent(0.0f);

		// Setup extent for mesh particles. 
		UParticleModuleTypeDataMesh* MeshType = Cast<UParticleModuleTypeDataMesh>(LODLevel->TypeDataModule);
		if (MeshType && MeshType->Mesh)
		{
			Extent = MeshType->Mesh->GetBounds().BoxExtent;
			Extent = MeshType->bCollisionsConsiderPartilceSize ? Extent * Size : Extent;
		}
		
		FHitResult Hit;

		Hit.Normal.X = 0.0f;
		Hit.Normal.Y = 0.0f;
		Hit.Normal.Z = 0.0f;

		check( Owner->Component );

		FVector End = Location + Direction * Size / DirScalar;

		if ((World->IsGameWorld() == true) && (MaxCollisionDistance < WORLD_MAX))
		{
			// LOD collision by distance
			bool bCloseEnough = false;
			for (int32 CheckIdx = 0; CheckIdx < PlayerCount; CheckIdx++)
			{
				float CheckValue = (PlayerLocations[CheckIdx] - End).SizeSquared() * PlayerLODDistanceFactor[CheckIdx];
				if (CheckValue < SquaredMaxCollisionDistance)
				{
					bCloseEnough = true;
					break;
				}
			}
			if (bCloseEnough == false)
			{
				Particle.Flags |= STATE_Particle_IgnoreCollisions;
				CONTINUE_UPDATE_LOOP;
			}
		}

		AActor* IgnoreActor = bIgnoreSourceActor ? Actor : NULL;

		if (PerformCollisionCheck(Owner, &Particle, Hit, IgnoreActor, End, OldLocation, Extent))
		{
			bool bDecrementMaxCount = true;
			bool bIgnoreCollision = false;
			if (Hit.GetActor())
			{
				bDecrementMaxCount = !bPawnsDoNotDecrementCount || !Cast<APawn>(Hit.GetActor());
				bIgnoreCollision = bIgnoreTriggerVolumes && Hit.GetActor()->IsA(ATriggerBase::StaticClass());
				//@todo.SAS. Allow for PSys to say what it wants to collide w/?
			}

			if (bIgnoreCollision == false)
			{
				if (bDecrementMaxCount && (bOnlyVerticalNormalsDecrementCount == true))
				{
					if ((Hit.Normal.IsNearlyZero() == false) && (FMath::Abs(Hit.Normal.Z) + VerticalFudgeFactor) < 1.0f)
					{
						//UE_LOG(LogParticles, Log, TEXT("Particle from %s had a non-vertical hit!"), *(Owner->Component->Template->GetPathName()));
						bDecrementMaxCount = false;
					}
				}

				if (bDecrementMaxCount)
				{
					CollisionPayload.UsedCollisions--;
				}

				if (CollisionPayload.UsedCollisions > 0)
				{
					if (LODLevel->RequiredModule->bUseLocalSpace)
					{
						// Transform the particle velocity to world space
						FVector OldVelocity		= OwnerTM.TransformVector(Particle.Velocity);
						FVector	BaseVelocity	= OwnerTM.TransformVector(Particle.BaseVelocity);
						BaseVelocity			= BaseVelocity.MirrorByVector(Hit.Normal) * CollisionPayload.UsedDampingFactor;

						Particle.BaseVelocity		= OwnerTM.InverseTransformVector(BaseVelocity);
						Particle.BaseRotationRate	= Particle.BaseRotationRate * CollisionPayload.UsedDampingFactorRotation.X;
						if (bMeshRotationActive && MeshRotationOffset > 0)
						{
							FMeshRotationPayloadData* PayloadData = (FMeshRotationPayloadData*)((uint8*)&Particle + MeshRotationOffset);
							PayloadData->RotationRateBase *= CollisionPayload.UsedDampingFactorRotation;
						}

						// Reset the current velocity and manually adjust location to bounce off based on normal and time of collision.
						FVector NewVelocity	= Direction.MirrorByVector(Hit.Normal) * (Location - OldLocation).Size() * CollisionPayload.UsedDampingFactor;
						Particle.Velocity		= FVector::ZeroVector;

						// New location
						FVector	NewLocation		= Location + NewVelocity * (1.f - Hit.Time);
						Particle.Location		= OwnerTM.InverseTransformPosition(NewLocation);

						if (bApplyPhysics)
						{
							check(IsInGameThread());
							UPrimitiveComponent* PrimitiveComponent = Hit.Component.Get();
							if(PrimitiveComponent && PrimitiveComponent->IsAnySimulatingPhysics())
							{
								FVector vImpulse;
								vImpulse = -(NewVelocity - OldVelocity) * ParticleMass.GetValue(Particle.RelativeTime, Owner->Component);
								PrimitiveComponent->AddImpulseAtLocation(vImpulse, Hit.Location, Hit.BoneName);
							}
						}
					}
					else
					{
						FVector vOldVelocity = Particle.Velocity;

						// Reflect base velocity and apply damping factor.
						Particle.BaseVelocity		= Particle.BaseVelocity.MirrorByVector(Hit.Normal) * CollisionPayload.UsedDampingFactor;
						Particle.BaseRotationRate	= Particle.BaseRotationRate * CollisionPayload.UsedDampingFactorRotation.X;
						if (bMeshRotationActive && MeshRotationOffset > 0)
						{
							FMeshRotationPayloadData* PayloadData = (FMeshRotationPayloadData*)((uint8*)&Particle + MeshRotationOffset);
							PayloadData->RotationRateBase *= CollisionPayload.UsedDampingFactorRotation;
						}

						// Reset the current velocity and manually adjust location to bounce off based on normal and time of collision.
						FVector vNewVelocity	= Direction.MirrorByVector(Hit.Normal) * (Location - OldLocation).Size() * CollisionPayload.UsedDampingFactor;
						Particle.Velocity		= FVector::ZeroVector;
						Particle.Location	   += vNewVelocity * (1.f - Hit.Time);

						if (bApplyPhysics)
						{
							check(IsInGameThread());
							UPrimitiveComponent* PrimitiveComponent = Hit.Component.Get();
							if(PrimitiveComponent && PrimitiveComponent->IsAnySimulatingPhysics())
							{
								FVector vImpulse;
								vImpulse = -(vNewVelocity - vOldVelocity) * ParticleMass.GetValue(Particle.RelativeTime, Owner->Component);
								PrimitiveComponent->AddImpulseAtLocation(vImpulse, Hit.Location, Hit.BoneName);
							}
						}
					}

					if (EventPayload && (EventPayload->bCollisionEventsPresent == true))
					{
						LODLevel->EventGenerator->HandleParticleCollision(Owner, EventPayload, &CollisionPayload, &Hit, &Particle, Direction);
					}
				}
				else
				{
					if (LODLevel->RequiredModule->bUseLocalSpace == true)
					{
						Size = OwnerTM.TransformVector(Size);
					}
					Particle.Location = Hit.Location + (Size / 2.0f);
					if (LODLevel->RequiredModule->bUseLocalSpace == true)
					{
						// We need to transform the location back relative to the PSys.
						// NOTE: LocalSpace makes sense only for stationary emitters that use collision.
						Particle.Location = OwnerTM.InverseTransformPosition(Particle.Location);
					}
					switch (CollisionCompletionOption)
					{
					case EPCC_Kill:
						{
							if (EventPayload && (EventPayload->bDeathEventsPresent == true))
							{
								LODLevel->EventGenerator->HandleParticleKilled(Owner, EventPayload, &Particle);
							}
							KILL_CURRENT_PARTICLE;
						}
						break;
					case EPCC_Freeze:
						{
							Particle.Flags |= STATE_Particle_Freeze;
						}
						break;
					case EPCC_HaltCollisions:
						{
							Particle.Flags |= STATE_Particle_IgnoreCollisions;
						}
						break;
					case EPCC_FreezeTranslation:
						{
							Particle.Flags |= STATE_Particle_FreezeTranslation;
						}
						break;
					case EPCC_FreezeRotation:
						{
							Particle.Flags |= STATE_Particle_FreezeRotation;
						}
						break;
					case EPCC_FreezeMovement:
						{
							Particle.Flags |= STATE_Particle_FreezeRotation;
							Particle.Flags |= STATE_Particle_FreezeTranslation;
						}
						break;
					}

					if (EventPayload && (EventPayload->bCollisionEventsPresent == true))
					{
						LODLevel->EventGenerator->HandleParticleCollision(Owner, EventPayload, &CollisionPayload, &Hit, &Particle, Direction);
					}
				}
				Particle.Flags |= STATE_Particle_CollisionHasOccurred;
			}
		}
	}
	END_UPDATE_LOOP;
}
Пример #4
0
/** 
 * Returns an array of visibility data for the given view position, or NULL if none exists. 
 * The data bits are indexed by VisibilityId of each primitive in the scene.
 * This method decompresses data if necessary and caches it based on the bucket and chunk index in the view state.
 */
const uint8* FSceneViewState::GetPrecomputedVisibilityData(FViewInfo& View, const FScene* Scene)
{
	const uint8* PrecomputedVisibilityData = NULL;
	if (Scene->PrecomputedVisibilityHandler && GAllowPrecomputedVisibility && View.Family->EngineShowFlags.PrecomputedVisibility)
	{
		const FPrecomputedVisibilityHandler& Handler = *Scene->PrecomputedVisibilityHandler;
		FViewElementPDI VisibilityCellsPDI(&View, NULL);

		// Draw visibility cell bounds for debugging if enabled
		if ((GShowPrecomputedVisibilityCells || View.Family->EngineShowFlags.PrecomputedVisibilityCells) && !GShowRelevantPrecomputedVisibilityCells)
		{
			for (int32 BucketIndex = 0; BucketIndex < Handler.PrecomputedVisibilityCellBuckets.Num(); BucketIndex++)
			{
				for (int32 CellIndex = 0; CellIndex < Handler.PrecomputedVisibilityCellBuckets[BucketIndex].Cells.Num(); CellIndex++)
				{
					const FPrecomputedVisibilityCell& CurrentCell = Handler.PrecomputedVisibilityCellBuckets[BucketIndex].Cells[CellIndex];
					// Construct the cell's bounds
					const FBox CellBounds(CurrentCell.Min, CurrentCell.Min + FVector(Handler.PrecomputedVisibilityCellSizeXY, Handler.PrecomputedVisibilityCellSizeXY, Handler.PrecomputedVisibilityCellSizeZ));
					if (View.ViewFrustum.IntersectBox(CellBounds.GetCenter(), CellBounds.GetExtent()))
					{
						DrawWireBox(&VisibilityCellsPDI, CellBounds, FColor(50, 50, 255), SDPG_World);
					}
				}
			}
		}

		// Calculate the bucket that ViewOrigin falls into
		// Cells are hashed into buckets to reduce search time
		const float FloatOffsetX = (View.ViewMatrices.ViewOrigin.X - Handler.PrecomputedVisibilityCellBucketOriginXY.X) / Handler.PrecomputedVisibilityCellSizeXY;
		// FMath::TruncToInt rounds toward 0, we want to always round down
		const int32 BucketIndexX = FMath::Abs((FMath::TruncToInt(FloatOffsetX) - (FloatOffsetX < 0.0f ? 1 : 0)) / Handler.PrecomputedVisibilityCellBucketSizeXY % Handler.PrecomputedVisibilityNumCellBuckets);
		const float FloatOffsetY = (View.ViewMatrices.ViewOrigin.Y -Handler.PrecomputedVisibilityCellBucketOriginXY.Y) / Handler.PrecomputedVisibilityCellSizeXY;
		const int32 BucketIndexY = FMath::Abs((FMath::TruncToInt(FloatOffsetY) - (FloatOffsetY < 0.0f ? 1 : 0)) / Handler.PrecomputedVisibilityCellBucketSizeXY % Handler.PrecomputedVisibilityNumCellBuckets);
		const int32 PrecomputedVisibilityBucketIndex = BucketIndexY * Handler.PrecomputedVisibilityCellBucketSizeXY + BucketIndexX;

		check(PrecomputedVisibilityBucketIndex < Handler.PrecomputedVisibilityCellBuckets.Num());
		const FPrecomputedVisibilityBucket& CurrentBucket = Handler.PrecomputedVisibilityCellBuckets[PrecomputedVisibilityBucketIndex];
		for (int32 CellIndex = 0; CellIndex < CurrentBucket.Cells.Num(); CellIndex++)
		{
			const FPrecomputedVisibilityCell& CurrentCell = CurrentBucket.Cells[CellIndex];
			// Construct the cell's bounds
			const FBox CellBounds(CurrentCell.Min, CurrentCell.Min + FVector(Handler.PrecomputedVisibilityCellSizeXY, Handler.PrecomputedVisibilityCellSizeXY, Handler.PrecomputedVisibilityCellSizeZ));
			// Check if ViewOrigin is inside the current cell
			if (CellBounds.IsInside(View.ViewMatrices.ViewOrigin))
			{
				// Reuse a cached decompressed chunk if possible
				if (CachedVisibilityChunk
					&& CachedVisibilityHandlerId == Scene->PrecomputedVisibilityHandler->GetId()
					&& CachedVisibilityBucketIndex == PrecomputedVisibilityBucketIndex
					&& CachedVisibilityChunkIndex == CurrentCell.ChunkIndex)
				{
					checkSlow(CachedVisibilityChunk->Num() >= CurrentCell.DataOffset + CurrentBucket.CellDataSize);
					PrecomputedVisibilityData = &(*CachedVisibilityChunk)[CurrentCell.DataOffset];
				}
				else
				{
					const FCompressedVisibilityChunk& CompressedChunk = Handler.PrecomputedVisibilityCellBuckets[PrecomputedVisibilityBucketIndex].CellDataChunks[CurrentCell.ChunkIndex];
					CachedVisibilityBucketIndex = PrecomputedVisibilityBucketIndex;
					CachedVisibilityChunkIndex = CurrentCell.ChunkIndex;
					CachedVisibilityHandlerId = Scene->PrecomputedVisibilityHandler->GetId();

					if (CompressedChunk.bCompressed)
					{
						// Decompress the needed visibility data chunk
						DecompressedVisibilityChunk.Reset();
						DecompressedVisibilityChunk.AddUninitialized(CompressedChunk.UncompressedSize);
						verify(FCompression::UncompressMemory(
							COMPRESS_ZLIB, 
							DecompressedVisibilityChunk.GetData(),
							CompressedChunk.UncompressedSize,
							CompressedChunk.Data.GetData(),
							CompressedChunk.Data.Num()));
						CachedVisibilityChunk = &DecompressedVisibilityChunk;
					}
					else
					{
						CachedVisibilityChunk = &CompressedChunk.Data;
					}

					checkSlow(CachedVisibilityChunk->Num() >= CurrentCell.DataOffset + CurrentBucket.CellDataSize);
					// Return a pointer to the cell containing ViewOrigin's decompressed visibility data
					PrecomputedVisibilityData = &(*CachedVisibilityChunk)[CurrentCell.DataOffset];
				}

				if (GShowRelevantPrecomputedVisibilityCells)
				{
					// Draw the currently used visibility cell with green wireframe for debugging
					DrawWireBox(&VisibilityCellsPDI, CellBounds, FColor(50, 255, 50), SDPG_Foreground);
				}
				else
				{
					break;
				}
			}
			else if (GShowRelevantPrecomputedVisibilityCells)
			{
				// Draw all cells in the current visibility bucket as blue wireframe
				DrawWireBox(&VisibilityCellsPDI, CellBounds, FColor(50, 50, 255), SDPG_World);
			}
		}
	}
	return PrecomputedVisibilityData;
}
Пример #5
0
FORCEINLINE_DEBUGGABLE bool FNavMeshPath::DoesPathIntersectBoxImplementation(const FBox& Box, const FVector& StartLocation, uint32 StartingIndex, int32* IntersectingSegmentIndex) const
{
	bool bIntersects = false;	
	const TArray<FNavigationPortalEdge>& CorridorEdges = GetPathCorridorEdges();

	// note that it's a bit simplified. It works
	if (CorridorEdges.IsValidIndex(StartingIndex))
	{
		FVector Start = StartLocation;
		for (int32 PortalIndex = StartingIndex; PortalIndex < CorridorEdges.Num(); ++PortalIndex)
		{
			const FNavigationPortalEdge& Edge = CorridorEdges[PortalIndex];
			const FVector End = Edge.Right + (Edge.Left - Edge.Right) / 2;
			if (FVector::DistSquared(Start, End) > SMALL_NUMBER)
			{
				const FVector Direction = (End - Start);
				if (FMath::LineBoxIntersection(Box, Start, End, Direction))
				{
					bIntersects = true;
					if (IntersectingSegmentIndex != NULL)
					{
						*IntersectingSegmentIndex = PortalIndex;
					}
					break;
				}
			}

			Start = End;
		}

		// test the last portal->path end line
		if (bIntersects == false)
		{
			ensure(PathPoints.Num() == 2);
			const FVector End = PathPoints.Last().Location;
			if (FVector::DistSquared(StartLocation, End) > SMALL_NUMBER)
			{
				const FVector Direction = (End - Start);
				if (FMath::LineBoxIntersection(Box, Start, End, Direction))
				{
					bIntersects = true;
					if (IntersectingSegmentIndex != NULL)
					{
						*IntersectingSegmentIndex = CorridorEdges.Num();
					}
				}
			}
		}
	}
	
	// just check if path's end is inside the tested box
	if (bIntersects == false && Box.IsInside(PathPoints.Last().Location))
	{
		bIntersects = true;
		if (IntersectingSegmentIndex != NULL)
		{
			*IntersectingSegmentIndex = CorridorEdges.Num();
		}
	}

	return bIntersects;
}