void test_scalar_generic(int nfft) { typedef typename FFT<T>::Complex Complex; typedef typename FFT<T>::Scalar Scalar; typedef typename VectorType<Container, Scalar>::type ScalarVector; typedef typename VectorType<Container, Complex>::type ComplexVector; FFT<T> fft; ScalarVector tbuf(nfft); ComplexVector freqBuf; for (int k = 0; k < nfft; ++k) tbuf[k] = (T)(rand() / (double)RAND_MAX - .5); // make sure it DOESN'T give the right full spectrum answer // if we've asked for half-spectrum fft.SetFlag(fft.HalfSpectrum); fft.fwd(freqBuf, tbuf); VERIFY((size_t)freqBuf.size() == (size_t)((nfft >> 1) + 1)); VERIFY(fft_rmse(freqBuf, tbuf) < test_precision<T>()); // gross check fft.ClearFlag(fft.HalfSpectrum); fft.fwd(freqBuf, tbuf); VERIFY((size_t)freqBuf.size() == (size_t)nfft); VERIFY(fft_rmse(freqBuf, tbuf) < test_precision<T>()); // gross check if (nfft & 1) return; // odd FFTs get the wrong size inverse FFT ScalarVector tbuf2; fft.inv(tbuf2, freqBuf); VERIFY(dif_rmse(tbuf, tbuf2) < test_precision<T>()); // gross check // verify that the Unscaled flag takes effect ScalarVector tbuf3; fft.SetFlag(fft.Unscaled); fft.inv(tbuf3, freqBuf); for (int k = 0; k < nfft; ++k) tbuf3[k] *= T(1. / nfft); // for (size_t i=0;i<(size_t) tbuf.size();++i) // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl; VERIFY(dif_rmse(tbuf, tbuf3) < test_precision<T>()); // gross check // verify that ClearFlag works fft.ClearFlag(fft.Unscaled); fft.inv(tbuf2, freqBuf); VERIFY(dif_rmse(tbuf, tbuf2) < test_precision<T>()); // gross check }
void bench(int nfft,bool fwd,bool unscaled=false, bool halfspec=false) { typedef typename NumTraits<T>::Real Scalar; typedef typename std::complex<Scalar> Complex; int nits = NDATA/nfft; vector<T> inbuf(nfft); vector<Complex > outbuf(nfft); FFT< Scalar > fft; if (unscaled) { fft.SetFlag(fft.Unscaled); cout << "unscaled "; } if (halfspec) { fft.SetFlag(fft.HalfSpectrum); cout << "halfspec "; } std::fill(inbuf.begin(),inbuf.end(),0); fft.fwd( outbuf , inbuf); BenchTimer timer; timer.reset(); for (int k=0;k<8;++k) { timer.start(); if (fwd) for(int i = 0; i < nits; i++) fft.fwd( outbuf , inbuf); else for(int i = 0; i < nits; i++) fft.inv(inbuf,outbuf); timer.stop(); } cout << nameof<Scalar>() << " "; double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits ); if ( NumTraits<T>::IsComplex ) { cout << "complex"; }else{ cout << "real "; mflops /= 2; } if (fwd) cout << " fwd"; else cout << " inv"; cout << " NFFT=" << nfft << " " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s " << mflops << "MFLOPS\n"; }
void test_complex_generic(int nfft) { typedef typename FFT<T>::Complex Complex; typedef typename VectorType<Container,Complex>::type ComplexVector; FFT<T> fft; ComplexVector inbuf(nfft); ComplexVector outbuf; ComplexVector buf3; for (int k=0;k<nfft;++k) inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); fft.fwd( outbuf , inbuf); VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check fft.inv( buf3 , outbuf); VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check // verify that the Unscaled flag takes effect ComplexVector buf4; fft.SetFlag(fft.Unscaled); fft.inv( buf4 , outbuf); for (int k=0;k<nfft;++k) buf4[k] *= T(1./nfft); VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check // verify that ClearFlag works fft.ClearFlag(fft.Unscaled); fft.inv( buf3 , outbuf); VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check }
void test_return_by_value(int len) { VectorXf in; VectorXf in1; in.setRandom( len ); VectorXcf out1,out2; FFT<float> fft; fft.SetFlag(fft.HalfSpectrum ); fft.fwd(out1,in); out2 = fft.fwd(in); VERIFY( (out1-out2).norm() < test_precision<float>() ); in1 = fft.inv(out1); VERIFY( (in1-in).norm() < test_precision<float>() ); }
void UnbiasedSquaredPhaseLagIndex::compute(ConnectivitySettings::IntermediateTrialData& inputData, QVector<QPair<int,MatrixXcd> >& vecPairCsdSum, QVector<QPair<int,MatrixXd> >& vecPairCsdImagSignSum, QMutex& mutex, int iNRows, int iNFreqs, int iNfft, const QPair<MatrixXd, VectorXd>& tapers) { if(inputData.vecPairCsdImagSign.size() == iNRows) { //qDebug() << "UnbiasedSquaredPhaseLagIndex::compute - vecPairCsdImagSign was already computed for this trial."; return; } inputData.vecPairCsdImagSign.clear(); int i,j; // Calculate tapered spectra if not available already // This code was copied and changed modified Utils/Spectra since we do not want to call the function due to time loss. if(inputData.vecTapSpectra.size() != iNRows) { inputData.vecTapSpectra.clear(); RowVectorXd vecInputFFT, rowData; RowVectorXcd vecTmpFreq; MatrixXcd matTapSpectrum(tapers.first.rows(), iNFreqs); QVector<Eigen::MatrixXcd> vecTapSpectra; FFT<double> fft; fft.SetFlag(fft.HalfSpectrum); for (i = 0; i < iNRows; ++i) { // Substract mean rowData.array() = inputData.matData.row(i).array() - inputData.matData.row(i).mean(); // Calculate tapered spectra if not available already for(j = 0; j < tapers.first.rows(); j++) { vecInputFFT = rowData.cwiseProduct(tapers.first.row(j)); // FFT for freq domain returning the half spectrum and multiply taper weights fft.fwd(vecTmpFreq, vecInputFFT, iNfft); matTapSpectrum.row(j) = vecTmpFreq * tapers.second(j); } inputData.vecTapSpectra.append(matTapSpectrum); } } // Compute CSD if(inputData.vecPairCsd.isEmpty()) { double denomCSD = sqrt(tapers.second.cwiseAbs2().sum()) * sqrt(tapers.second.cwiseAbs2().sum()) / 2.0; bool bNfftEven = false; if (iNfft % 2 == 0){ bNfftEven = true; } MatrixXcd matCsd = MatrixXcd(iNRows, iNFreqs); for (i = 0; i < iNRows; ++i) { for (j = i; j < iNRows; ++j) { // Compute CSD (average over tapers if necessary) matCsd.row(j) = inputData.vecTapSpectra.at(i).cwiseProduct(inputData.vecTapSpectra.at(j).conjugate()).colwise().sum() / denomCSD; // Divide first and last element by 2 due to half spectrum matCsd.row(j)(0) /= 2.0; if(bNfftEven) { matCsd.row(j).tail(1) /= 2.0; } } inputData.vecPairCsd.append(QPair<int,MatrixXcd>(i,matCsd)); inputData.vecPairCsdImagSign.append(QPair<int,MatrixXd>(i,matCsd.imag().cwiseSign())); } mutex.lock(); if(vecPairCsdSum.isEmpty()) { vecPairCsdSum = inputData.vecPairCsd; vecPairCsdImagSignSum = inputData.vecPairCsdImagSign; } else { for (int j = 0; j < vecPairCsdSum.size(); ++j) { vecPairCsdSum[j].second += inputData.vecPairCsd.at(j).second; vecPairCsdImagSignSum[j].second += inputData.vecPairCsdImagSign.at(j).second; } } mutex.unlock(); } else { if(inputData.vecPairCsdImagSign.isEmpty()) { for (i = 0; i < inputData.vecPairCsd.size(); ++i) { inputData.vecPairCsdImagSign.append(QPair<int,MatrixXd>(i,inputData.vecPairCsd.at(i).second.imag().cwiseSign())); } mutex.lock(); if(vecPairCsdImagSignSum.isEmpty()) { vecPairCsdImagSignSum = inputData.vecPairCsdImagSign; } else { for (int j = 0; j < vecPairCsdImagSignSum.size(); ++j) { vecPairCsdImagSignSum[j].second += inputData.vecPairCsdImagSign.at(j).second; } } mutex.unlock(); } } }