/** * Calculate the fitting errors and assign them to the fitting function. * @param covar :: A covariance matrix to use for error calculations. * It can be calculated with calCovarianceMatrix(). * @param chi2 :: The final chi-squared of the fit. */ void CostFuncFitting::calFittingErrors(const GSLMatrix &covar, double chi2) { size_t np = m_function->nParams(); auto covarMatrix = boost::shared_ptr<Kernel::Matrix<double>>( new Kernel::Matrix<double>(np, np)); size_t ia = 0; for (size_t i = 0; i < np; ++i) { if (m_function->isFixed(i)) { m_function->setError(i, 0); } else { size_t ja = 0; for (size_t j = 0; j < np; ++j) { if (!m_function->isFixed(j)) { (*covarMatrix)[i][j] = covar.get(ia, ja); ++ja; } } double err = sqrt(covar.get(ia, ia)); m_function->setError(i, err); ++ia; } } m_function->setCovarianceMatrix(covarMatrix); m_function->setChiSquared(chi2); }
/** * Calculate the fitting errors and assign them to the fitting function. * @param covar :: A covariance matrix to use for error calculations. * It can be calculated with calCovarianceMatrix(). */ void CostFuncFitting::calFittingErrors(const GSLMatrix& covar) { size_t np = m_function->nParams(); size_t ia = 0; for(size_t i = 0; i < np; ++i) { if (m_function->isFixed(i)) { m_function->setError(i,0); } else { double err = sqrt(covar.get(ia,ia)); m_function->setError(i,err); ++ia; } } }
/** * Calculates covariance matrix for fitting function's active parameters. * @param covar :: Output cavariance matrix. * @param epsrel :: Tolerance. */ void CostFuncLeastSquares::calActiveCovarianceMatrix(GSLMatrix &covar, double epsrel) { UNUSED_ARG(epsrel); if (m_hessian.isEmpty()) { valDerivHessian(); } if (g_log.is(Kernel::Logger::Priority::PRIO_DEBUG)) { std::ostringstream osHess; osHess << "== Hessian (H) ==\n"; osHess << std::left << std::fixed; for (size_t i = 0; i < m_hessian.size1(); ++i) { for (size_t j = 0; j < m_hessian.size2(); ++j) { osHess << std::setw(10); osHess << m_hessian.get(i, j) << " "; } osHess << "\n"; } g_log.debug() << osHess.str(); } covar = m_hessian; covar.invert(); if (g_log.is(Kernel::Logger::Priority::PRIO_DEBUG)) { std::ostringstream osCovar; osCovar << "== Covariance matrix (H^-1) ==\n"; osCovar << std::left << std::fixed; for (size_t i = 0; i < covar.size1(); ++i) { for (size_t j = 0; j < covar.size2(); ++j) { osCovar << std::setw(10); osCovar << covar.get(i, j) << " "; } osCovar << "\n"; } g_log.debug() << osCovar.str(); } }
/** Executes the algorithm * * @throw runtime_error Thrown if algorithm cannot execute */ void Fit::execConcrete() { std::string ties = getPropertyValue("Ties"); if (!ties.empty()) { m_function->addTies(ties); } std::string contstraints = getPropertyValue("Constraints"); if (!contstraints.empty()) { m_function->addConstraints(contstraints); } // prepare the function for a fit m_function->setUpForFit(); API::FunctionDomain_sptr domain; API::FunctionValues_sptr values; m_domainCreator->createDomain(domain, values); // do something with the function which may depend on workspace m_domainCreator->initFunction(m_function); // get the minimizer std::string minimizerName = getPropertyValue("Minimizer"); API::IFuncMinimizer_sptr minimizer = API::FuncMinimizerFactory::Instance().createMinimizer(minimizerName); // Try to retrieve optional properties int intMaxIterations = getProperty("MaxIterations"); const size_t maxIterations = static_cast<size_t>(intMaxIterations); // get the cost function which must be a CostFuncFitting boost::shared_ptr<CostFuncFitting> costFunc = boost::dynamic_pointer_cast<CostFuncFitting>( API::CostFunctionFactory::Instance().create( getPropertyValue("CostFunction"))); costFunc->setFittingFunction(m_function, domain, values); minimizer->initialize(costFunc, maxIterations); const int64_t nsteps = maxIterations * m_function->estimateNoProgressCalls(); API::Progress prog(this, 0.0, 1.0, nsteps); m_function->setProgressReporter(&prog); // do the fitting until success or iteration limit is reached size_t iter = 0; bool success = false; std::string errorString; g_log.debug("Starting minimizer iteration\n"); while (iter < maxIterations) { g_log.debug() << "Starting iteration " << iter << "\n"; m_function->iterationStarting(); if (!minimizer->iterate(iter)) { errorString = minimizer->getError(); g_log.debug() << "Iteration stopped. Minimizer status string=" << errorString << "\n"; success = errorString.empty() || errorString == "success"; if (success) { errorString = "success"; } break; } prog.report(); m_function->iterationFinished(); ++iter; } g_log.debug() << "Number of minimizer iterations=" << iter << "\n"; minimizer->finalize(); if (iter >= maxIterations) { if (!errorString.empty()) { errorString += '\n'; } errorString += "Failed to converge after " + boost::lexical_cast<std::string>(maxIterations) + " iterations."; } // return the status flag setPropertyValue("OutputStatus", errorString); // degrees of freedom size_t dof = domain->size() - costFunc->nParams(); if (dof == 0) dof = 1; double rawcostfuncval = minimizer->costFunctionVal(); double finalCostFuncVal = rawcostfuncval / double(dof); setProperty("OutputChi2overDoF", finalCostFuncVal); // fit ended, creating output // get the workspace API::Workspace_const_sptr ws = getProperty("InputWorkspace"); bool doCreateOutput = getProperty("CreateOutput"); std::string baseName = getPropertyValue("Output"); if (!baseName.empty()) { doCreateOutput = true; } bool doCalcErrors = getProperty("CalcErrors"); if (doCreateOutput) { doCalcErrors = true; } if (costFunc->nParams() == 0) { doCalcErrors = false; } GSLMatrix covar; if (doCalcErrors) { // Calculate the covariance matrix and the errors. costFunc->calCovarianceMatrix(covar); costFunc->calFittingErrors(covar, rawcostfuncval); } if (doCreateOutput) { copyMinimizerOutput(*minimizer); if (baseName.empty()) { baseName = ws->name(); if (baseName.empty()) { baseName = "Output"; } } baseName += "_"; declareProperty( new API::WorkspaceProperty<API::ITableWorkspace>( "OutputNormalisedCovarianceMatrix", "", Kernel::Direction::Output), "The name of the TableWorkspace in which to store the final covariance " "matrix"); setPropertyValue("OutputNormalisedCovarianceMatrix", baseName + "NormalisedCovarianceMatrix"); Mantid::API::ITableWorkspace_sptr covariance = Mantid::API::WorkspaceFactory::Instance().createTable("TableWorkspace"); covariance->addColumn("str", "Name"); // set plot type to Label = 6 covariance->getColumn(covariance->columnCount() - 1)->setPlotType(6); // std::vector<std::string> paramThatAreFitted; // used for populating 1st // "name" column for (size_t i = 0; i < m_function->nParams(); i++) { if (m_function->isActive(i)) { covariance->addColumn("double", m_function->parameterName(i)); // paramThatAreFitted.push_back(m_function->parameterName(i)); } } size_t np = m_function->nParams(); size_t ia = 0; for (size_t i = 0; i < np; i++) { if (m_function->isFixed(i)) continue; Mantid::API::TableRow row = covariance->appendRow(); row << m_function->parameterName(i); size_t ja = 0; for (size_t j = 0; j < np; j++) { if (m_function->isFixed(j)) continue; if (j == i) row << 100.0; else { if (!covar.gsl()) { throw std::runtime_error( "There was an error while allocating the (GSL) covariance " "matrix " "which is needed to produce fitting error results."); } row << 100.0 * covar.get(ia, ja) / sqrt(covar.get(ia, ia) * covar.get(ja, ja)); } ++ja; } ++ia; } setProperty("OutputNormalisedCovarianceMatrix", covariance); // create output parameter table workspace to store final fit parameters // including error estimates if derivative of fitting function defined declareProperty(new API::WorkspaceProperty<API::ITableWorkspace>( "OutputParameters", "", Kernel::Direction::Output), "The name of the TableWorkspace in which to store the " "final fit parameters"); setPropertyValue("OutputParameters", baseName + "Parameters"); Mantid::API::ITableWorkspace_sptr result = Mantid::API::WorkspaceFactory::Instance().createTable("TableWorkspace"); result->addColumn("str", "Name"); // set plot type to Label = 6 result->getColumn(result->columnCount() - 1)->setPlotType(6); result->addColumn("double", "Value"); result->addColumn("double", "Error"); // yErr = 5 result->getColumn(result->columnCount() - 1)->setPlotType(5); for (size_t i = 0; i < m_function->nParams(); i++) { Mantid::API::TableRow row = result->appendRow(); row << m_function->parameterName(i) << m_function->getParameter(i) << m_function->getError(i); } // Add chi-squared value at the end of parameter table Mantid::API::TableRow row = result->appendRow(); #if 1 std::string costfuncname = getPropertyValue("CostFunction"); if (costfuncname == "Rwp") row << "Cost function value" << rawcostfuncval; else row << "Cost function value" << finalCostFuncVal; setProperty("OutputParameters", result); #else row << "Cost function value" << finalCostFuncVal; Mantid::API::TableRow row2 = result->appendRow(); std::string name(getPropertyValue("CostFunction")); name += " value"; row2 << name << rawcostfuncval; #endif setProperty("OutputParameters", result); bool outputParametersOnly = getProperty("OutputParametersOnly"); if (!outputParametersOnly) { const bool unrollComposites = getProperty("OutputCompositeMembers"); bool convolveMembers = existsProperty("ConvolveMembers"); if (convolveMembers) { convolveMembers = getProperty("ConvolveMembers"); } m_domainCreator->separateCompositeMembersInOutput(unrollComposites, convolveMembers); m_domainCreator->createOutputWorkspace(baseName, m_function, domain, values); } } progress(1.0); }