Пример #1
0
void Rationalizer::RewriteAssignment(LIR::Use& use)
{
    assert(use.IsInitialized());

    GenTreeOp* assignment = use.Def()->AsOp();
    assert(assignment->OperGet() == GT_ASG);

    GenTree* location = assignment->gtGetOp1();
    GenTree* value    = assignment->gtGetOp2();

    genTreeOps locationOp = location->OperGet();

    if (assignment->OperIsBlkOp())
    {
#ifdef FEATURE_SIMD
        if (varTypeIsSIMD(location) && assignment->OperIsInitBlkOp())
        {
            if (location->OperGet() == GT_LCL_VAR)
            {
                var_types simdType = location->TypeGet();
                GenTree*  initVal  = assignment->gtOp.gtOp2;
                var_types baseType = comp->getBaseTypeOfSIMDLocal(location);
                if (baseType != TYP_UNKNOWN)
                {
                    GenTreeSIMD* simdTree = new (comp, GT_SIMD)
                        GenTreeSIMD(simdType, initVal, SIMDIntrinsicInit, baseType, genTypeSize(simdType));
                    assignment->gtOp.gtOp2 = simdTree;
                    value                  = simdTree;
                    initVal->gtNext        = simdTree;
                    simdTree->gtPrev       = initVal;

                    simdTree->gtNext = location;
                    location->gtPrev = simdTree;
                }
            }
        }
#endif // FEATURE_SIMD
        if ((location->TypeGet() == TYP_STRUCT) && !assignment->IsPhiDefn() && !value->IsMultiRegCall())
        {
            if ((location->OperGet() == GT_LCL_VAR))
            {
                // We need to construct a block node for the location.
                // Modify lcl to be the address form.
                location->SetOper(addrForm(locationOp));
                LclVarDsc* varDsc     = &(comp->lvaTable[location->AsLclVarCommon()->gtLclNum]);
                location->gtType      = TYP_BYREF;
                GenTreeBlk*  storeBlk = nullptr;
                unsigned int size     = varDsc->lvExactSize;

                if (varDsc->lvStructGcCount != 0)
                {
                    CORINFO_CLASS_HANDLE structHnd = varDsc->lvVerTypeInfo.GetClassHandle();
                    GenTreeObj*          objNode   = comp->gtNewObjNode(structHnd, location)->AsObj();
                    unsigned int         slots = (unsigned)(roundUp(size, TARGET_POINTER_SIZE) / TARGET_POINTER_SIZE);

                    objNode->SetGCInfo(varDsc->lvGcLayout, varDsc->lvStructGcCount, slots);
                    objNode->ChangeOper(GT_STORE_OBJ);
                    objNode->SetData(value);
                    comp->fgMorphUnsafeBlk(objNode);
                    storeBlk = objNode;
                }
                else
                {
                    storeBlk = new (comp, GT_STORE_BLK) GenTreeBlk(GT_STORE_BLK, TYP_STRUCT, location, value, size);
                }
                storeBlk->gtFlags |= (GTF_REVERSE_OPS | GTF_ASG);
                storeBlk->gtFlags |= ((location->gtFlags | value->gtFlags) & GTF_ALL_EFFECT);

                GenTree* insertionPoint = location->gtNext;
                BlockRange().InsertBefore(insertionPoint, storeBlk);
                use.ReplaceWith(comp, storeBlk);
                BlockRange().Remove(assignment);
                JITDUMP("After transforming local struct assignment into a block op:\n");
                DISPTREERANGE(BlockRange(), use.Def());
                JITDUMP("\n");
                return;
            }
            else
            {
                assert(location->OperIsBlk());
            }
        }
    }

    switch (locationOp)
    {
        case GT_LCL_VAR:
        case GT_LCL_FLD:
        case GT_REG_VAR:
        case GT_PHI_ARG:
            RewriteAssignmentIntoStoreLclCore(assignment, location, value, locationOp);
            BlockRange().Remove(location);
            break;

        case GT_IND:
        {
            GenTreeStoreInd* store =
                new (comp, GT_STOREIND) GenTreeStoreInd(location->TypeGet(), location->gtGetOp1(), value);

            copyFlags(store, assignment, GTF_ALL_EFFECT);
            copyFlags(store, location, GTF_IND_FLAGS);

            if (assignment->IsReverseOp())
            {
                store->gtFlags |= GTF_REVERSE_OPS;
            }

            // TODO: JIT dump

            // Remove the GT_IND node and replace the assignment node with the store
            BlockRange().Remove(location);
            BlockRange().InsertBefore(assignment, store);
            use.ReplaceWith(comp, store);
            BlockRange().Remove(assignment);
        }
        break;

        case GT_CLS_VAR:
        {
            location->SetOper(GT_CLS_VAR_ADDR);
            location->gtType = TYP_BYREF;

            assignment->SetOper(GT_STOREIND);

            // TODO: JIT dump
        }
        break;

        case GT_BLK:
        case GT_OBJ:
        case GT_DYN_BLK:
        {
            assert(varTypeIsStruct(location));
            GenTreeBlk* storeBlk = location->AsBlk();
            genTreeOps  storeOper;
            switch (location->gtOper)
            {
                case GT_BLK:
                    storeOper = GT_STORE_BLK;
                    break;
                case GT_OBJ:
                    storeOper = GT_STORE_OBJ;
                    break;
                case GT_DYN_BLK:
                    storeOper = GT_STORE_DYN_BLK;
                    break;
                default:
                    unreached();
            }
            JITDUMP("Rewriting GT_ASG(%s(X), Y) to %s(X,Y):\n", GenTree::NodeName(location->gtOper),
                    GenTree::NodeName(storeOper));
            storeBlk->SetOperRaw(storeOper);
            storeBlk->gtFlags &= ~GTF_DONT_CSE;
            storeBlk->gtFlags |= (assignment->gtFlags & (GTF_ALL_EFFECT | GTF_REVERSE_OPS | GTF_BLK_VOLATILE |
                                                         GTF_BLK_UNALIGNED | GTF_DONT_CSE));
            storeBlk->gtBlk.Data() = value;

            // Replace the assignment node with the store
            use.ReplaceWith(comp, storeBlk);
            BlockRange().Remove(assignment);
            DISPTREERANGE(BlockRange(), use.Def());
            JITDUMP("\n");
        }
        break;

        default:
            unreached();
            break;
    }
}
Пример #2
0
Compiler::fgWalkResult Rationalizer::RewriteNode(GenTree** useEdge, ArrayStack<GenTree*>& parentStack)
{
    assert(useEdge != nullptr);

    GenTree* node = *useEdge;
    assert(node != nullptr);

#ifdef DEBUG
    const bool isLateArg = (node->gtFlags & GTF_LATE_ARG) != 0;
#endif

    // First, remove any preceeding list nodes, which are not otherwise visited by the tree walk.
    //
    // NOTE: GT_FIELD_LIST head nodes, and GT_LIST nodes used by phi nodes will in fact be visited.
    for (GenTree* prev = node->gtPrev; prev != nullptr && prev->OperIsAnyList() && !(prev->OperIsFieldListHead());
         prev          = node->gtPrev)
    {
        BlockRange().Remove(prev);
    }

    // In addition, remove the current node if it is a GT_LIST node that is not an aggregate.
    if (node->OperIsAnyList())
    {
        GenTreeArgList* list = node->AsArgList();
        if (!list->OperIsFieldListHead())
        {
            BlockRange().Remove(list);
        }
        return Compiler::WALK_CONTINUE;
    }

    LIR::Use use;
    if (parentStack.Height() < 2)
    {
        use = LIR::Use::GetDummyUse(BlockRange(), *useEdge);
    }
    else
    {
        use = LIR::Use(BlockRange(), useEdge, parentStack.Index(1));
    }

    assert(node == use.Def());
    switch (node->OperGet())
    {
        case GT_ASG:
            RewriteAssignment(use);
            break;

        case GT_BOX:
            // GT_BOX at this level just passes through so get rid of it
            use.ReplaceWith(comp, node->gtGetOp1());
            BlockRange().Remove(node);
            break;

        case GT_ADDR:
            RewriteAddress(use);
            break;

        case GT_IND:
            // Clear the `GTF_IND_ASG_LHS` flag, which overlaps with `GTF_IND_REQ_ADDR_IN_REG`.
            node->gtFlags &= ~GTF_IND_ASG_LHS;

            if (varTypeIsSIMD(node))
            {
                RewriteSIMDOperand(use, false);
            }
            else
            {
                // Due to promotion of structs containing fields of type struct with a
                // single scalar type field, we could potentially see IR nodes of the
                // form GT_IND(GT_ADD(lclvarAddr, 0)) where 0 is an offset representing
                // a field-seq. These get folded here.
                //
                // TODO: This code can be removed once JIT implements recursive struct
                // promotion instead of lying about the type of struct field as the type
                // of its single scalar field.
                GenTree* addr = node->AsIndir()->Addr();
                if (addr->OperGet() == GT_ADD && addr->gtGetOp1()->OperGet() == GT_LCL_VAR_ADDR &&
                    addr->gtGetOp2()->IsIntegralConst(0))
                {
                    GenTreeLclVarCommon* lclVarNode = addr->gtGetOp1()->AsLclVarCommon();
                    unsigned             lclNum     = lclVarNode->GetLclNum();
                    LclVarDsc*           varDsc     = comp->lvaTable + lclNum;
                    if (node->TypeGet() == varDsc->TypeGet())
                    {
                        JITDUMP("Rewriting GT_IND(GT_ADD(LCL_VAR_ADDR,0)) to LCL_VAR\n");
                        lclVarNode->SetOper(GT_LCL_VAR);
                        lclVarNode->gtType = node->TypeGet();
                        use.ReplaceWith(comp, lclVarNode);
                        BlockRange().Remove(addr);
                        BlockRange().Remove(addr->gtGetOp2());
                        BlockRange().Remove(node);
                    }
                }
            }
            break;

        case GT_NOP:
            // fgMorph sometimes inserts NOP nodes between defs and uses
            // supposedly 'to prevent constant folding'. In this case, remove the
            // NOP.
            if (node->gtGetOp1() != nullptr)
            {
                use.ReplaceWith(comp, node->gtGetOp1());
                BlockRange().Remove(node);
            }
            break;

        case GT_COMMA:
        {
            GenTree* op1 = node->gtGetOp1();
            if ((op1->gtFlags & GTF_ALL_EFFECT) == 0)
            {
                // The LHS has no side effects. Remove it.
                bool               isClosed    = false;
                unsigned           sideEffects = 0;
                LIR::ReadOnlyRange lhsRange    = BlockRange().GetTreeRange(op1, &isClosed, &sideEffects);

                // None of the transforms performed herein violate tree order, so these
                // should always be true.
                assert(isClosed);
                assert((sideEffects & GTF_ALL_EFFECT) == 0);

                BlockRange().Delete(comp, m_block, std::move(lhsRange));
            }

            GenTree* replacement = node->gtGetOp2();
            if (!use.IsDummyUse())
            {
                use.ReplaceWith(comp, replacement);
            }
            else
            {
                // This is a top-level comma. If the RHS has no side effects we can remove
                // it as well.
                if ((replacement->gtFlags & GTF_ALL_EFFECT) == 0)
                {
                    bool               isClosed    = false;
                    unsigned           sideEffects = 0;
                    LIR::ReadOnlyRange rhsRange    = BlockRange().GetTreeRange(replacement, &isClosed, &sideEffects);

                    // None of the transforms performed herein violate tree order, so these
                    // should always be true.
                    assert(isClosed);
                    assert((sideEffects & GTF_ALL_EFFECT) == 0);

                    BlockRange().Delete(comp, m_block, std::move(rhsRange));
                }
            }

            BlockRange().Remove(node);
        }
        break;

        case GT_ARGPLACE:
            // Remove argplace and list nodes from the execution order.
            //
            // TODO: remove phi args and phi nodes as well?
            BlockRange().Remove(node);
            break;

#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM_)
        case GT_CLS_VAR:
        {
            // Class vars that are the target of an assignment will get rewritten into
            // GT_STOREIND(GT_CLS_VAR_ADDR, val) by RewriteAssignment. This check is
            // not strictly necessary--the GT_IND(GT_CLS_VAR_ADDR) pattern that would
            // otherwise be generated would also be picked up by RewriteAssignment--but
            // skipping the rewrite here saves an allocation and a bit of extra work.
            const bool isLHSOfAssignment = (use.User()->OperGet() == GT_ASG) && (use.User()->gtGetOp1() == node);
            if (!isLHSOfAssignment)
            {
                GenTree* ind = comp->gtNewOperNode(GT_IND, node->TypeGet(), node);

                node->SetOper(GT_CLS_VAR_ADDR);
                node->gtType = TYP_BYREF;

                BlockRange().InsertAfter(node, ind);
                use.ReplaceWith(comp, ind);

                // TODO: JIT dump
            }
        }
        break;
#endif // _TARGET_XARCH_

        case GT_INTRINSIC:
            // Non-target intrinsics should have already been rewritten back into user calls.
            assert(Compiler::IsTargetIntrinsic(node->gtIntrinsic.gtIntrinsicId));
            break;

#ifdef FEATURE_SIMD
        case GT_BLK:
        case GT_OBJ:
        {
            // TODO-1stClassStructs: These should have been transformed to GT_INDs, but in order
            // to preserve existing behavior, we will keep this as a block node if this is the
            // lhs of a block assignment, and either:
            // - It is a "generic" TYP_STRUCT assignment, OR
            // - It is an initblk, OR
            // - Neither the lhs or rhs are known to be of SIMD type.

            GenTree* parent  = use.User();
            bool     keepBlk = false;
            if ((parent->OperGet() == GT_ASG) && (node == parent->gtGetOp1()))
            {
                if ((node->TypeGet() == TYP_STRUCT) || parent->OperIsInitBlkOp())
                {
                    keepBlk = true;
                }
                else if (!comp->isAddrOfSIMDType(node->AsBlk()->Addr()))
                {
                    GenTree* dataSrc = parent->gtGetOp2();
                    if (!dataSrc->IsLocal() && (dataSrc->OperGet() != GT_SIMD))
                    {
                        noway_assert(dataSrc->OperIsIndir());
                        keepBlk = !comp->isAddrOfSIMDType(dataSrc->AsIndir()->Addr());
                    }
                }
            }
            RewriteSIMDOperand(use, keepBlk);
        }
        break;

        case GT_LCL_FLD:
        case GT_STORE_LCL_FLD:
            // TODO-1stClassStructs: Eliminate this.
            FixupIfSIMDLocal(node->AsLclVarCommon());
            break;

        case GT_SIMD:
        {
            noway_assert(comp->featureSIMD);
            GenTreeSIMD* simdNode = node->AsSIMD();
            unsigned     simdSize = simdNode->gtSIMDSize;
            var_types    simdType = comp->getSIMDTypeForSize(simdSize);

            // TODO-1stClassStructs: This should be handled more generally for enregistered or promoted
            // structs that are passed or returned in a different register type than their enregistered
            // type(s).
            if (simdNode->gtType == TYP_I_IMPL && simdNode->gtSIMDSize == TARGET_POINTER_SIZE)
            {
                // This happens when it is consumed by a GT_RET_EXPR.
                // It can only be a Vector2f or Vector2i.
                assert(genTypeSize(simdNode->gtSIMDBaseType) == 4);
                simdNode->gtType = TYP_SIMD8;
            }
            // Certain SIMD trees require rationalizing.
            if (simdNode->gtSIMD.gtSIMDIntrinsicID == SIMDIntrinsicInitArray)
            {
                // Rewrite this as an explicit load.
                JITDUMP("Rewriting GT_SIMD array init as an explicit load:\n");
                unsigned int baseTypeSize = genTypeSize(simdNode->gtSIMDBaseType);
                GenTree*     address = new (comp, GT_LEA) GenTreeAddrMode(TYP_BYREF, simdNode->gtOp1, simdNode->gtOp2,
                                                                      baseTypeSize, offsetof(CORINFO_Array, u1Elems));
                GenTree* ind = comp->gtNewOperNode(GT_IND, simdType, address);

                BlockRange().InsertBefore(simdNode, address, ind);
                use.ReplaceWith(comp, ind);
                BlockRange().Remove(simdNode);

                DISPTREERANGE(BlockRange(), use.Def());
                JITDUMP("\n");
            }
            else
            {
                // This code depends on the fact that NONE of the SIMD intrinsics take vector operands
                // of a different width.  If that assumption changes, we will EITHER have to make these type
                // transformations during importation, and plumb the types all the way through the JIT,
                // OR add a lot of special handling here.
                GenTree* op1 = simdNode->gtGetOp1();
                if (op1 != nullptr && op1->gtType == TYP_STRUCT)
                {
                    op1->gtType = simdType;
                }

                GenTree* op2 = simdNode->gtGetOp2IfPresent();
                if (op2 != nullptr && op2->gtType == TYP_STRUCT)
                {
                    op2->gtType = simdType;
                }
            }
        }
        break;
#endif // FEATURE_SIMD

        default:
            // JCC nodes should not be present in HIR.
            assert(node->OperGet() != GT_JCC);
            break;
    }

    // Do some extra processing on top-level nodes to remove unused local reads.
    if (node->OperIsLocalRead())
    {
        if (use.IsDummyUse())
        {
            comp->lvaDecRefCnts(node);
            BlockRange().Remove(node);
        }
        else
        {
            // Local reads are side-effect-free; clear any flags leftover from frontend transformations.
            node->gtFlags &= ~GTF_ALL_EFFECT;
        }
    }

    assert(isLateArg == ((use.Def()->gtFlags & GTF_LATE_ARG) != 0));

    return Compiler::WALK_CONTINUE;
}
Пример #3
0
void Rationalizer::RewriteAssignment(LIR::Use& use)
{
    assert(use.IsInitialized());

    GenTreeOp* assignment = use.Def()->AsOp();
    assert(assignment->OperGet() == GT_ASG);

    GenTree* location = assignment->gtGetOp1();
    GenTree* value    = assignment->gtGetOp2();

    genTreeOps locationOp = location->OperGet();

#ifdef FEATURE_SIMD
    if (varTypeIsSIMD(location) && assignment->OperIsInitBlkOp())
    {
        if (location->OperGet() == GT_LCL_VAR)
        {
            var_types simdType = location->TypeGet();
            GenTree*  initVal  = assignment->gtOp.gtOp2;
            var_types baseType = comp->getBaseTypeOfSIMDLocal(location);
            if (baseType != TYP_UNKNOWN)
            {
                GenTreeSIMD* simdTree = new (comp, GT_SIMD)
                    GenTreeSIMD(simdType, initVal, SIMDIntrinsicInit, baseType, genTypeSize(simdType));
                assignment->gtOp.gtOp2 = simdTree;
                value                  = simdTree;
                initVal->gtNext        = simdTree;
                simdTree->gtPrev       = initVal;

                simdTree->gtNext = location;
                location->gtPrev = simdTree;
            }
        }
        else
        {
            assert(location->OperIsBlk());
        }
    }
#endif // FEATURE_SIMD

    switch (locationOp)
    {
        case GT_LCL_VAR:
        case GT_LCL_FLD:
        case GT_REG_VAR:
        case GT_PHI_ARG:
            RewriteAssignmentIntoStoreLclCore(assignment, location, value, locationOp);
            BlockRange().Remove(location);
            break;

        case GT_IND:
        {
            GenTreeStoreInd* store =
                new (comp, GT_STOREIND) GenTreeStoreInd(location->TypeGet(), location->gtGetOp1(), value);

            copyFlags(store, assignment, GTF_ALL_EFFECT);
            copyFlags(store, location, GTF_IND_FLAGS);

            if (assignment->IsReverseOp())
            {
                store->gtFlags |= GTF_REVERSE_OPS;
            }

            // TODO: JIT dump

            // Remove the GT_IND node and replace the assignment node with the store
            BlockRange().Remove(location);
            BlockRange().InsertBefore(assignment, store);
            use.ReplaceWith(comp, store);
            BlockRange().Remove(assignment);
        }
        break;

        case GT_CLS_VAR:
        {
            location->SetOper(GT_CLS_VAR_ADDR);
            location->gtType = TYP_BYREF;

            assignment->SetOper(GT_STOREIND);

            // TODO: JIT dump
        }
        break;

        case GT_BLK:
        case GT_OBJ:
        case GT_DYN_BLK:
        {
            assert(varTypeIsStruct(location));
            GenTreeBlk* storeBlk = location->AsBlk();
            genTreeOps  storeOper;
            switch (location->gtOper)
            {
                case GT_BLK:
                    storeOper = GT_STORE_BLK;
                    break;
                case GT_OBJ:
                    storeOper = GT_STORE_OBJ;
                    break;
                case GT_DYN_BLK:
                    storeOper = GT_STORE_DYN_BLK;
                    break;
                default:
                    unreached();
            }
            JITDUMP("Rewriting GT_ASG(%s(X), Y) to %s(X,Y):\n", GenTree::NodeName(location->gtOper),
                    GenTree::NodeName(storeOper));
            storeBlk->SetOperRaw(storeOper);
            storeBlk->gtFlags &= ~GTF_DONT_CSE;
            storeBlk->gtFlags |= (assignment->gtFlags & (GTF_ALL_EFFECT | GTF_REVERSE_OPS | GTF_BLK_VOLATILE |
                                                         GTF_BLK_UNALIGNED | GTF_BLK_INIT | GTF_DONT_CSE));
            storeBlk->gtBlk.Data() = value;

            // Replace the assignment node with the store
            use.ReplaceWith(comp, storeBlk);
            BlockRange().Remove(assignment);
            DISPTREERANGE(BlockRange(), use.Def());
            JITDUMP("\n");
        }
        break;

        default:
            unreached();
            break;
    }
}