int main(int argc, char** argv) { #if defined(_MSC_VER) && _MSC_VER < 1900 _set_output_format(_TWO_DIGIT_EXPONENT); #endif int retn = 0; try { HMWSoln* HMW = new HMWSoln("HMW_NaCl.xml"); HMW->printCoeffs(); size_t nsp = HMW->nSpecies(); double a1 = HMW->AionicRadius(1); printf("a1 = %g\n", a1); double a2 = HMW->AionicRadius(2); printf("a2 = %g\n", a2); double mu0[100]; double moll[100]; string sName; HMW->getMolalities(moll); moll[1] = 6.0997; moll[2] = 2.1628E-9; moll[3] = 6.0997; moll[4] =1.3977E-6; /* * Equalize charge balance and dump into Cl- */ double sum = -moll[1] + moll[2] + moll[3] - moll[4]; moll[1] += sum; HMW->setMolalities(moll); HMW->setState_TP(298.15, 1.01325E5); pAtable(HMW); HMW->setState_TP(298.15, 1.01325E5); HMW->getStandardChemPotentials(mu0); // translate from J/kmol to kJ/gmol for (size_t k = 0; k < nsp; k++) { mu0[k] *= 1.0E-6; } printf(" Species Standard chemical potentials (kJ/gmol) \n"); printf("------------------------------------------------------------\n"); for (size_t k = 0; k < nsp; k++) { sName = HMW->speciesName(k); printf("%16s %16.9g\n", sName.c_str(), mu0[k]); } printf("------------------------------------------------------------\n"); printf(" Some DeltaSS values: Delta(mu_0)\n"); double deltaG; size_t i1, i2, j1; double RT = 8.314472E-3 * 298.15; i1 = HMW->speciesIndex("Na+"); i2 = HMW->speciesIndex("Cl-"); deltaG = -432.6304 - mu0[i1] - mu0[i2]; printf(" NaCl(S): Na+ + Cl- -> NaCl(S): %14.7g kJ/gmol \n", deltaG); printf(" : %14.7g (dimensionless) \n", deltaG/RT); printf(" : %14.7g (dimensionless/ln10) \n", deltaG/(RT * log(10.0))); printf(" G0(NaCl(S)) = %14.7g (fixed)\n", -432.6304); printf(" G0(Na+) = %14.7g\n", mu0[i1]); printf(" G0(Cl-) = %14.7g\n", mu0[i2]); i1 = HMW->speciesIndex("H+"); i2 = HMW->speciesIndex("H2O(L)"); j1 = HMW->speciesIndex("OH-"); if (i1 == npos || i2 == npos || j1 == npos) { printf("problems\n"); exit(-1); } deltaG = mu0[j1] + mu0[i1] - mu0[i2]; printf(" OH-: H2O(L) - H+ -> OH-: %14.7g kJ/gmol \n", deltaG); printf(" : %14.7g (dimensionless) \n", deltaG/RT); printf(" : %14.7g (dimensionless/ln10) \n", deltaG/(RT * log(10.0))); printf(" G0(OH-) = %14.7g\n", mu0[j1]); printf(" G0(H+) = %14.7g\n", mu0[i1]); printf(" G0(H2O(L)) = %14.7g\n", mu0[i2]); printf("------------------------------------------------------------\n"); delete HMW; HMW = 0; Cantera::appdelete(); return retn; } catch (CanteraError& err) { std::cout << err.what() << std::endl; return -1; } }
int main(int argc, char **argv) { int retn = 0; int i; try { char iFile[80]; strcpy(iFile, "HMW_NaCl.xml"); if (argc > 1) { strcpy(iFile, argv[1]); } double Cp0_R[20], pmCp[20]; //fileLog *fl = new fileLog("HMW_graph_1.log"); //setLogger(fl); HMWSoln *HMW = new HMWSoln(iFile, "NaCl_electrolyte"); /* * Load in and initialize the */ Cantera::ThermoPhase *solid = newPhase("NaCl_Solid.xml","NaCl(S)"); int nsp = HMW->nSpecies(); double acMol[100]; double act[100]; double mf[100]; double moll[100]; for (i = 0; i < 100; i++) { acMol[i] = 1.0; act[i] = 1.0; mf[i] = 0.0; act[i] = 0.0; } HMW->getMoleFractions(mf); string sName; TemperatureTable TTable(15, false, 273.15, 25., 0, 0); HMW->setState_TP(298.15, 1.01325E5); int i1 = HMW->speciesIndex("Na+"); int i2 = HMW->speciesIndex("Cl-"); //int i3 = HMW->speciesIndex("H2O(L)"); for (i = 0; i < nsp; i++) { moll[i] = 0.0; } HMW->setMolalities(moll); double ISQRT; double Is = 0.0; /* * Set the Pressure */ double pres = OneAtm; /* * Fix the molality */ Is = 6.146; ISQRT = sqrt(Is); moll[i1] = Is; moll[i2] = Is; HMW->setState_TPM(298.15, pres, moll); double Xmol[30]; HMW->getMoleFractions(Xmol); ThermoPhase *hmwtb = (ThermoPhase *)HMW; ThermoPhase *hmwtbDupl = hmwtb->duplMyselfAsThermoPhase(); //ThermoPhase *hmwtbDupl = 0; HMWSoln *HMW1 = HMW; HMWSoln *HMW2 = dynamic_cast<HMWSoln *>(hmwtbDupl); for (int itherms = 0; itherms < 2; itherms++) { if (itherms ==0) { HMW = HMW1; } else { HMW = HMW2; } /* * ThermoUnknowns */ double T; double Cp0_NaCl = 0.0, Cp0_Naplus = 0.0, Cp0_Clminus = 0.0, Delta_Cp0s = 0.0, Cp0_H2O = 0.0; double Cp_NaCl = 0.0, Cp_Naplus = 0.0, Cp_Clminus = 0.0, Cp_H2O = 0.0; double molarCp0; #ifdef DEBUG_HKM FILE *ttt; if (itherms ==0) { ttt = fopen("table1.csv","w"); } else { ttt = fopen("table2.csv","w"); } #endif printf("A_J/R: Comparison to Pitzer's book, p. 99, can be made.\n"); printf(" Agreement is within 12 pc \n"); printf("\n"); printf("Delta_Cp0: Heat Capacity of Solution per mole of salt (standard states)\n"); printf(" rxn for the ss heat of soln: " "NaCl(s) -> Na+(aq) + Cl-(aq)\n"); printf("\n"); printf("Delta_Cps: Delta heat Capacity of Solution per mole of salt\n"); printf(" rxn for heat of soln: " " n1 H2O(l,pure) + n2 NaCl(s) -> n2 MX(aq) + n1 H2O(l) \n"); printf(" Delta_Hs = (n1 h_H2O_bar + n2 h_MX_bar " "- n1 h_H2O_0 - n2 h_MX_0)/n2\n"); printf("\n"); printf("phiJ: phiJ, calculated from the program, is checked\n"); printf(" against analytical formula in J_standalone program.\n"); printf(" (comparison against Eq. 12, Silvester and Pitzer)\n"); /* * Create a Table of NaCl Enthalpy Properties as a Function * of the Temperature */ printf("\n\n"); printf(" T, Pres, Aphi, A_J/R," " Delta_Cp0," " Delta_Cps, J, phiJ," " MolarCp, MolarCp0\n"); printf(" Kelvin, bar, sqrt(kg/gmol), sqrt(kg/gmol)," " kJ/gmolSalt," " kJ/gmolSalt, kJ/gmolSoln, kJ/gmolSalt," " kJ/gmol, kJ/gmol\n"); #ifdef DEBUG_HKM fprintf(ttt,"T, Pres, A_J/R, Delta_Cp0, Delta_Cps, J, phiJ\n"); fprintf(ttt,"Kelvin, bar, sqrt(kg/gmol), kJ/gmolSalt, kJ/gmolSalt, kJ/gmolSoln," "kJ/gmolSalt\n"); #endif for (i = 0; i < TTable.NPoints + 1; i++) { if (i == TTable.NPoints) { T = 323.15; } else { T = TTable.T[i]; } /* * RT is in units of J/kmolK */ //double RT = GasConstant * T; /* * Make sure we are at the saturation pressure or above. */ double psat = HMW->satPressure(T); pres = OneAtm; if (psat > pres) pres = psat; HMW->setState_TPM(T, pres, moll); solid->setState_TP(T, pres); /* * Get the Standard State DeltaH */ solid->getCp_R(Cp0_R); Cp0_NaCl = Cp0_R[0] * GasConstant * 1.0E-6; HMW->getCp_R(Cp0_R); Cp0_H2O = Cp0_R[0] * GasConstant * 1.0E-6; Cp0_Naplus = Cp0_R[i1] * GasConstant * 1.0E-6; Cp0_Clminus = Cp0_R[i2] * GasConstant * 1.0E-6; /* * Calculate the standard state heat of solution * for NaCl(s) -> Na+ + Cl- * units: kJ/gmolSalt */ Delta_Cp0s = Cp0_Naplus + Cp0_Clminus - Cp0_NaCl; pmCp[0] = solid->cp_mole(); Cp_NaCl = pmCp[0] * 1.0E-6; HMW->getPartialMolarCp(pmCp); Cp_H2O = pmCp[0] * 1.0E-6; Cp_Naplus = pmCp[i1] * 1.0E-6; Cp_Clminus = pmCp[i2] * 1.0E-6; //double Delta_Cp_Salt = Cp_NaCl - (Cp_Naplus + Cp_Clminus); double molarCp = HMW->cp_mole() * 1.0E-6; /* * Calculate the heat capacity of solution for the reaction * NaCl(s) -> Na+ + Cl- */ double Delta_Cps = (Xmol[0] * Cp_H2O + Xmol[i1] * Cp_Naplus + Xmol[i2] * Cp_Clminus - Xmol[0] * Cp0_H2O - Xmol[i1] * Cp_NaCl); Delta_Cps /= Xmol[i1]; /* * Calculate the relative heat capacity, J, from the * partial molar quantities, units J/gmolSolutionK */ double J = (Xmol[0] * (Cp_H2O - Cp0_H2O) + Xmol[i1] * (Cp_Naplus - Cp0_Naplus) + Xmol[i2] * (Cp_Clminus - Cp0_Clminus)); /* * Calculate the apparent relative molal heat capacity, phiJ, * units of J/gmolSaltAddedK */ double phiJ = J / Xmol[i1]; double Aphi = HMW->A_Debye_TP(T, pres) / 3.0; //double AL = HMW->ADebye_L(T,pres); double AJ = HMW->ADebye_J(T, pres); for (int k = 0; k < nsp; k++) { Cp0_R[k] *= GasConstant * 1.0E-6; } molarCp0 = 0.0; for (int k = 0; k < nsp; k++) { molarCp0 += Xmol[k] * Cp0_R[k]; } if (i != TTable.NPoints+1) { printf("%13g, %13g, %13g, %13g, %13g, %13g, " "%13g, %13g, %13g, %13g\n", T, pres*1.0E-5, Aphi, AJ/GasConstant, Delta_Cp0s, Delta_Cps, J, phiJ, molarCp , molarCp0 ); #ifdef DEBUG_HKM fprintf(ttt,"%g, %g, %g, %g, %g, %g, %g\n", T, pres*1.0E-5, AJ/GasConstant, Delta_Cp0s, Delta_Cps, J, phiJ); #endif } } printf("Breakdown of Heat Capacity Calculation at 323.15 K, 1atm:\n"); printf(" Species MoleFrac Molal Cp0 " " partCp (partCp - Cp0)\n"); printf(" H2O(L)"); printf("%13g %13g %13g %13g %13g\n", Xmol[0], moll[0], Cp0_H2O , Cp_H2O, Cp_H2O-Cp0_H2O); printf(" Na+ "); printf("%13g %13g %13g %13g %13g\n", Xmol[i1], moll[i1], Cp0_Naplus , Cp_Naplus, Cp_Naplus -Cp0_Naplus); printf(" Cl- "); printf("%13g %13g %13g %13g %13g\n", Xmol[i2], moll[i2], Cp0_Clminus , Cp_Clminus, Cp_Clminus - Cp0_Clminus); printf(" NaCl(s)"); printf("%13g %13g %13g %13g\n", 1.0, Cp0_NaCl , Cp_NaCl, Cp_NaCl - Cp0_NaCl); #ifdef DEBUG_HKM fclose(ttt); #endif } delete HMW1; HMW = 0; delete hmwtbDupl; hmwtbDupl = 0; delete solid; solid = 0; Cantera::appdelete(); return retn; } catch (CanteraError) { printf("caught error\n"); showErrors(); Cantera::appdelete(); return -1; } }
int main(int argc, char** argv) { int retn = 0; size_t i; string commandFile; try { char iFile[80]; strcpy(iFile, "HMW_NaCl.xml"); if (argc > 1) { strcpy(iFile, argv[1]); } double Temp = 273.15 + 275.; double aTemp[7]; aTemp[0] = 298.15; aTemp[1] = 273.15 + 100.; aTemp[2] = 273.15 + 150.; aTemp[3] = 273.15 + 200.; aTemp[4] = 273.15 + 250.; aTemp[5] = 273.15 + 275.; aTemp[6] = 273.15 + 300.; HMWSoln* HMW = new HMWSoln(iFile, "NaCl_electrolyte"); size_t nsp = HMW->nSpecies(); double acMol[100]; double act[100]; double mf[100]; double moll[100]; for (i = 0; i < 100; i++) { acMol[i] = 1.0; act[i] = 1.0; mf[i] = 0.0; moll[i] = 0.0; } HMW->getMoleFractions(mf); string sName; FILE* ff; char fname[64]; for (int jTemp = 0; jTemp < 7; jTemp++) { Temp = aTemp[jTemp]; sprintf(fname, "T%3.0f.csv", Temp); ff = fopen(fname, "w"); HMW->setState_TP(Temp, 1.01325E5); printf(" Temperature = %g K\n", Temp); size_t i1 = HMW->speciesIndex("Na+"); size_t i2 = HMW->speciesIndex("Cl-"); size_t i3 = HMW->speciesIndex("H2O(L)"); for (i = 1; i < nsp; i++) { moll[i] = 0.0; } HMW->setState_TPM(Temp, OneAtm, moll); double Itop = 10.; double Ibot = 0.0; double ISQRTtop = sqrt(Itop); double ISQRTbot = sqrt(Ibot); double ISQRT; double Is = 0.0; size_t its = 100; bool doneSp = false; fprintf(ff," Is, sqrtIs, meanAc," " log10(meanAC), acMol_Na+," " acMol_Cl-, ac_Water, act_Water, OsmoticCoeff\n"); for (i = 0; i < its; i++) { ISQRT = ISQRTtop*((double)i)/(its - 1.0) + ISQRTbot*(1.0 - (double)i/(its - 1.0)); Is = ISQRT * ISQRT; if (!doneSp) { if (Is > 6.146) { Is = 6.146; doneSp = true; i = i - 1; } } moll[i1] = Is; moll[i2] = Is; HMW->setMolalities(moll); HMW->getMolalityActivityCoefficients(acMol); HMW->getActivities(act); double oc = HMW->osmoticCoefficient(); double meanAC = sqrt(acMol[i1] * acMol[i2]); fprintf(ff,"%15g, %15g, %15g, %15g, %15g, %15g, %15g, %15g, %15g\n", Is, ISQRT, meanAC, log10(meanAC), acMol[i1], acMol[i2], acMol[i3], act[i3], oc); } fclose(ff); } delete HMW; HMW = 0; Cantera::appdelete(); return retn; } catch (CanteraError& err) { std::cout << err.what() << std::endl; return -1; } }