int main (int argc, char** argv) { // Declare variables int size; char option; string name = ""; string name2 = ""; ifstream fin; vector<string> concepts = {}; string temp; string filename; HRR hrr; HRR hrr2; // Initiate program. Get size to use when working with vectors cout << "***Welcome to the HRR Engine tester!***\n" << "What size vectors do you want to create? "; cin >> size; // Set up the HRR engine HRREngine engine; engine.setVectorSize(size); do{ printMenu(); cin >> option; switch (option){ case '1': cout << "Please enter name of concept to search for: "; cin >> name; hrr = engine.query(name); //engine.printHRRHorizontal(hrr); break; case '2': cout << "Please enter name of concept to search for by representation: "; cin >> name; hrr = engine.query(name); //cout << "Representation: "; //engine.printHRRHorizontal(hrr); cout << "\nRepresentation is most like: "; cout << engine.query(hrr) << "\n\n"; break; case '3': // Get the name of the input file cout << "Please input name of file to read from: "; cin >> filename; // Open input filestream fin.open( filename ); // While there is more to read, read a concept and push it into concepts vector while (fin >> temp){ concepts.push_back(temp); } // Encode each string in concepts vector and store in a map engine.encodeConcepts( concepts ); break; case '4': // Get the names of the two vectors to combine cout << "Input the first concept: "; cin >> name; cout << "Input the second concept: "; cin >> name2; name = engine.combineConcepts(name, name2); cout << "The new concept is: " << name << "\n"; break; case '5': // Get the names of the two vectors to correlate cout << "Input the complex concept: "; cin >> name; cout << "Input the base concept: "; cin >> name2; name = engine.extractConcept(name, name2); cout << "The concept that is most similar to the extracted concept is: " << name << "\n"; break; case '6': engine.listAllConcepts(); break; case '7': engine.listAllConceptNames(); break; case '0': break; default: cout << "ERROR: Incorrect option entered\n"; break; } cout << "\n"; }while (!(option == '0')); return 0; }
int main (int argc, char** argv) { // Set up random number generation randomNumberGenerator.seed( time(0) ); // Get the world settings if ( argc > 1 ) { getSettingsFromFile(argv[1]); } else { worldSize = 64; vectorLength = 1024; alpha = 0.1; lambda = 0.5; discount = 0.9; epsilon = 0.05; } eligibility.resize(vectorLength); weights.resize(vectorLength); hrrEngine.setVectorSize(vectorLength); // Set up a log file ofstream Log; Log.open("results.log"); // Set up a final report file ofstream FinalReport; FinalReport.open("final.log"); // Initialize the world array with states for (int i = 0; i < worldSize; i++) { // Create a new state and add it to the world array State newState(0, vectorLength, i); world.push_back(newState); } // Initialize weight vector for (double& weight : weights) { weight = 0.0; } // Set up statistical variables averageNumberOfSteps = 0; maxNumberOfSteps = 0; minNumberOfSteps = IntMax; // Set up a location for the goal goalLocation = randomNumberGenerator() % worldSize; world[goalLocation].setReward(1.0); // Main loop of program. Run episodes until task is learned for (int i = 0; i < numberOfRuns; i++) { // Set up a location for the agent agentLocation = randomNumberGenerator() % worldSize; // Initialize Episode statistical variables int numberOfSteps = 0; // Reset the eligibility vector fill(eligibility.begin(), eligibility.end(), 0); State* thisState; // Movement through an episode do { // Set up a variable for the previous state thisState = &world[agentLocation]; cout << "Goal Location: " << goalLocation << "\tCurrent State: " << thisState->isAt() << "\n"; // Update the eligibility of the current state updateEligibility(thisState->getHRR()); // If we are at the goal, calculate the td error differently, since // there are no future steps if (thisState->isAt() == goalLocation) { cout << "Goal reached in " << numberOfSteps << " steps.\n"; State G = *thisState; HRR a = G.getHRR(); double TDError = r(G) - V(G); cout << "\n\nr(G) = " << r(G) << "\tV(G) = " << V(G) << "\n\n"; cout << "TDError: " << TDError << "\n"; for ( int x = 0; x < weights.size(); x++ ) { weights[x] += alpha * TDError * a[x]; } break; } else { // Choose a movement for the agent Move movement = chooseMovement( world[getLeftLocation( agentLocation )], world[agentLocation], world[getRightLocation( agentLocation )] ); // Perform the movement switch (movement) { case Left: agentLocation = getLeftLocation(agentLocation); break; case Right: agentLocation = getRightLocation(agentLocation); break; default: agentLocation = getLeftLocation(agentLocation); break; } State* nextState = &world[agentLocation]; // Update the weights State s = *thisState; State sPlus1 = *nextState; HRR a = s.getHRR(); double TDError = ( r(s) + discount * V(sPlus1) ) - V(s); cout << "r(s) = " << r(s) << "\tV(s+1) = " << V(sPlus1) << "\tV(s) = " << V(s) << "\n"; cout << "TDError: " << TDError << '\n'; cout << "Run: " << i << ", Step: " << numberOfSteps << ", Location: " << agentLocation << ", Goal: " << goalLocation << "\n"; for ( int x = 0; x < vectorLength; x++ ) { weights[x] += alpha * TDError * a[x]; } } numberOfSteps++; } while ( numberOfSteps <= 100 ); } //cout << "The size of the hrrs is: " << hrrEngine.getVectorSize() << "\n"; //cout << "The size of the eligibility vector is: " << eligibility.size() << "\n"; //cout << "The size of the weight vector is: " << weights.size() << "\n"; cout << "Values of each state:\n"; for (int i = 0; i < worldSize; i++) { cout << "\tV(" << i << ") = " << V(world[i]) << "\n"; } return 0; }