Пример #1
0
void Evaluation::evalSplit (Trainer *trainer, ISamples &samples, ssi_real_t split) {

	if (split <= 0 || split >= 1) {
		ssi_err ("split must be a value between 0 and 1");
	}

	_trainer = trainer;
	destroy_conf_mat ();
	init_conf_mat (samples);
	
	ssi_size_t *indices = new ssi_size_t[samples.getSize ()];
	ssi_size_t *indices_count_lab = new ssi_size_t[samples.getClassSize ()];
	ssi_size_t indices_count_all;

	indices_count_all = 0;
	for (ssi_size_t j = 0; j < samples.getClassSize (); j++) {
		indices_count_lab[j] = 0;
	}

	ssi_size_t label;
	ssi_size_t label_size;
	for (ssi_size_t j = 0; j < samples.getSize (); j++) {
		label = samples.get (j)->class_id;
		label_size = samples.getSize (label);
		if (++indices_count_lab[label] <= ssi_cast (ssi_size_t, label_size * split + 0.5f)) {
			indices[indices_count_all++] = j;			
		}
	}

	SampleList strain;
	SampleList stest;

	// split off samples
	ModelTools::SelectSampleList (samples, strain, stest, indices_count_all, indices);
	_n_total = stest.getSize ();
	_result_vec = new ssi_size_t[2*_n_total];
	_result_vec_ptr = _result_vec;

	// train with remaining samples
	_trainer->release ();	
	if (_preproc_mode) {
		_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
	} else if (_fselmethod) {
		_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
	}
	_trainer->train (strain);		

	// test with remaining samples
	eval_h (stest);

	delete[] indices;
	delete[] indices_count_lab;

}
Пример #2
0
void Evaluation::evalKFold (Trainer *trainer, ISamples &samples, ssi_size_t k) {

	// init confussion matrix
	_trainer = trainer;
	destroy_conf_mat ();
	init_conf_mat (samples);

	_n_total = samples.getSize ();
	_result_vec = new ssi_size_t[2*_n_total];
	_result_vec_ptr = _result_vec;
	
	ssi_size_t *indices = new ssi_size_t[samples.getSize ()];
	ssi_size_t *indices_count_lab = new ssi_size_t[samples.getClassSize ()];
	ssi_size_t indices_count_all;

	for (ssi_size_t i = 0; i < k; ++i) {

		indices_count_all = 0;
		for (ssi_size_t j = 0; j < samples.getClassSize (); j++) {
			indices_count_lab[j] = 0;
		}

		ssi_size_t label;
		for (ssi_size_t j = 0; j < samples.getSize (); j++) {
			label = samples.get (j)->class_id;
			if (++indices_count_lab[label] % k == i) {
				indices[indices_count_all++] = j;			
			}
		}

		SampleList strain;
		SampleList stest;	
		// split off i'th fold
		ModelTools::SelectSampleList (samples, stest, strain, indices_count_all, indices);

		// train with i'th fold
		_trainer->release ();
		if (_fselmethod) {
			_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
		}
		if (_preproc_mode) {
			_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
		}
		_trainer->train (strain);

		// test with remaining samples
		eval_h (stest);
	}

	delete[] indices;
	delete[] indices_count_lab;
}
Пример #3
0
bool MyFusion::train (ssi_size_t n_models,
	IModel **models,
	ISamples &samples) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	}

	ssi_size_t n_streams = samples.getStreamSize ();

	if (n_streams != n_models) {
		ssi_err ("#models (%u) differs from #streams (%u)", n_models, n_streams);
	}

	for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
		if (!models[n_model]->isTrained ()) {
			models[n_model]->train (samples, n_model);
		}
	}

	_is_trained = true;

	return true;
}
Пример #4
0
void AlgLibTools::Samples2MatrixWithClass (ISamples &samples,     
		ssi_size_t stream_id, ae_matrix* m) {

	ae_int_t nfeatures = samples.get (0)->streams[stream_id]->dim;
	ae_int_t nsamples = samples.getSize ();

    ae_int_t i = 0;
    ae_int_t j = 0;
    ae_state state;
    ae_matrix_clear(m);
    ae_matrix_set_length(m, nsamples, nfeatures+1, &state);

	ssi_sample_t *sample;
	samples.reset ();	
	while (sample = samples.next ()) {    
		ssi_real_t *ptr = ssi_pcast (ssi_real_t, sample->streams[stream_id]->ptr);
        for (j = 0; j <= nfeatures-1; j++)
        {
			m->ptr.pp_double[i][j] = ssi_cast (double, *ptr++);
        }
		m->ptr.pp_double[i][j] = ssi_cast (double, sample->class_id);
		i++;
    }

	//delete sample;
}
Пример #5
0
void AlgLibTools::Samples2matrix (
	ISamples &samples,   
	ssi_size_t stream_id,
	ssi_size_t class_id,
    ae_matrix* m,
    ae_state *state)
{
	
	ae_int_t nfeatures = samples.get (0)->streams[stream_id]->dim;
	ae_int_t nsamples = samples.getSize (class_id);
    ae_int_t i = 0;
    ae_int_t j = 0;

    ae_matrix_clear(m);    
    ae_matrix_set_length(m, nsamples, nfeatures, state);

	ssi_sample_t *sample;
	ISSelectClass samples_s (&samples);
	samples_s.setSelection (class_id);
	samples_s.reset ();
	while (sample = samples_s.next ()) {    
		ssi_real_t *ptr = ssi_pcast (ssi_real_t, sample->streams[stream_id]->ptr);
        for(j=0; j<=nfeatures-1; j++)
        {
			m->ptr.pp_double[i][j] = ssi_cast (double, *ptr++);
        }        
		i++;
    }
}
Пример #6
0
bool Fisher::build (ISamples &samples, ssi_size_t stream_index) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (isBuild ()) {
		ssi_wrn ("already trained");
		return false;
	}

	ae_state state;
	ae_int_t info; 


	ae_matrix data;
	ae_matrix_init (&data, 0, 0, DT_REAL, &state, ae_true);	
	// convert the samples to a matrix where the last column holds the class number to which the sample belongs
	AlgLibTools::Samples2MatrixWithClass(samples, 0, &data);

	_basis = new ae_matrix;
	ae_matrix_init (_basis, 0, 0, DT_REAL, &state, ae_true);
	fisherldan(&data,data.rows,data.cols-1 , samples.getClassSize(),&info,_basis,&state);

	ae_matrix_clear (&data);

	_is_build = true;

	return true;

}
Пример #7
0
void Evaluation::evalLOO (Trainer *trainer, ISamples &samples) {

	_trainer = trainer;
	destroy_conf_mat ();
	init_conf_mat (samples);
	ssi_size_t n_samples = samples.getSize ();

	_n_total = n_samples;
	_result_vec = new ssi_size_t[2*_n_total];
	_result_vec_ptr = _result_vec;

	ssi_size_t itest  = 0;
	ssi_size_t *itrain = new ssi_size_t[n_samples - 1];
	for (ssi_size_t nsample = 0; nsample < n_samples - 1; ++nsample) {
		itrain[nsample] = nsample+1;
	}
	
	ISSelectSample strain (&samples);
	ISSelectSample stest (&samples);

	strain.setSelection  (n_samples-1, itrain);
	stest.setSelection (1, &itest);

	_trainer->release ();
	if (_fselmethod) {
		_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
	}
	if (_preproc_mode) {
		_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
	}
	_trainer->train (strain);
	eval_h (stest);		

	for (ssi_size_t nsample = 1; nsample < n_samples; ++nsample) {
		
		itrain[nsample-1] = nsample-1;
		itest = nsample;

		strain.setSelection  (n_samples-1, itrain);
		stest.setSelection (1, &itest);

		_trainer->release ();	
		if (_fselmethod) {
			_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
		}
		if (_preproc_mode) {
			_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
		}
		_trainer->train (strain);

		eval_h (stest);		
	}

	delete [] itrain;

}
Пример #8
0
bool MyModel::train (ISamples &samples,
	ssi_size_t stream_index) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	}

	_n_classes = samples.getClassSize ();
	_n_features = samples.getStream (stream_index).dim;
	_centers = new ssi_real_t *[_n_classes];
	for (ssi_size_t i = 0; i < _n_classes; i++) {
		_centers[i] = new ssi_real_t[_n_features];
		for (ssi_size_t j = 0; j < _n_features; j++) {
			_centers[i][j] = 0;
		}
	}

	ssi_sample_t *sample;	
	samples.reset ();
	ssi_real_t *ptr = 0;
	while (sample = samples.next ()) {				
		ssi_size_t id = sample->class_id;	
		ptr = ssi_pcast (ssi_real_t, sample->streams[stream_index]->ptr);
		for (ssi_size_t j = 0; j < _n_features; j++) {
			_centers[id][j] += ptr[j];
		}
	}	 

	for (ssi_size_t i = 0; i < _n_classes; i++) {
		ssi_size_t num = samples.getSize (i);
		for (ssi_size_t j = 0; j < _n_features; j++) {
			_centers[i][j] /= num;
		}
	}

	return true;
}
Пример #9
0
bool SimpleKNN::train (ISamples &samples,
	ssi_size_t stream_index) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (samples.getSize () < _options.k) {
		ssi_wrn ("sample list has less than '%u' entries", _options.k);
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	}

	_n_classes = samples.getClassSize ();
	_n_samples = samples.getSize ();	
	_n_features = samples.getStream (stream_index).dim;
	_data = new ssi_real_t[_n_features*_n_samples];
	_classes = new ssi_size_t[_n_samples];

	ssi_sample_t *sample;	
	samples.reset ();
	ssi_real_t *data_ptr = _data;
	ssi_size_t *class_ptr = _classes;
	ssi_stream_t *stream_ptr = 0;
	ssi_size_t bytes_to_copy = _n_features * sizeof (ssi_real_t);
	while (sample = samples.next ()) {				
		memcpy (data_ptr, sample->streams[stream_index]->ptr, bytes_to_copy);
		*class_ptr++ = sample->class_id;
		data_ptr += _n_features;
	}	 

	return true;
}
Пример #10
0
void Evaluation::eval (Trainer *trainer, ISamples &samples) {

	// init confussion matrix
	_trainer = trainer;
	destroy_conf_mat ();
	init_conf_mat (samples);

	_n_total = samples.getSize ();
	_result_vec = new ssi_size_t[2*_n_total];
	_result_vec_ptr = _result_vec;

	// call helper function
	eval_h (samples);
}
Пример #11
0
void Evaluation::eval (IFusion &fusion, ssi_size_t n_models, IModel **models, ISamples &samples) {

	// init confussion matrix
	_trainer = 0;
	destroy_conf_mat ();	
	init_conf_mat (samples);
	ssi_size_t n_classes = samples.getClassSize ();
	ssi_real_t *probs = new ssi_real_t[n_classes];

	_n_total = samples.getSize ();
	_result_vec = new ssi_size_t[2*_n_total];
	_result_vec_ptr = _result_vec;

	samples.reset ();
	const ssi_sample_t *sample = 0;	
	while (sample = samples.next ()) {

		ssi_size_t real_index = sample->class_id;
		*_result_vec_ptr++ = real_index;
		if (fusion.forward (n_models, models, sample->num, sample->streams, n_classes, probs)) {

			ssi_size_t max_ind = 0;
			ssi_real_t max_val = probs[0];
			for (ssi_size_t i = 1; i < n_classes; i++) {
				if (probs[i] > max_val) {
					max_val = probs[i];
					max_ind = i;
				}
			}

			*_result_vec_ptr++ = max_ind;
			_conf_mat_ptr[real_index][max_ind]++;
			_n_classified++;

		} else if (!_allow_unclassified) {
			ssi_size_t max_ind = _default_class_id;
			*_result_vec_ptr++ = max_ind;
			_conf_mat_ptr[real_index][max_ind]++;
			_n_classified++;
		} else {
			*_result_vec_ptr++ = SSI_ISAMPLES_GARBAGE_CLASS_ID;
			_n_unclassified++;
		}	
	}

	delete[] probs;
}
Пример #12
0
bool MajorityVoting::train (ssi_size_t n_models,
	IModel **models,
	ISamples &samples) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (samples.getStreamSize () != n_models) {
		ssi_wrn ("#models (%u) differs from #streams (%u)", n_models, samples.getStreamSize ());
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	} 

	_n_streams = samples.getStreamSize ();
	_n_classes = samples.getClassSize ();
	_n_models  = n_models;

	if (samples.hasMissingData ()) {
		ISMissingData samples_h (&samples);
		for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
			if (!models[n_model]->isTrained ()) {
				samples_h.setStream (n_model);
				models[n_model]->train (samples_h, n_model);
			}
		}
	}
	else{
		for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
			if (!models[n_model]->isTrained ()) { models[n_model]->train (samples, n_model); }
		}		
	}
	
	return true;
}
Пример #13
0
bool SimpleFusion::train (ssi_size_t n_models,
	IModel **models,
	ISamples &samples) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	}

	ssi_size_t n_streams = samples.getStreamSize ();

	if (n_streams != 1 && n_streams != n_models) {
		ssi_err ("#models (%u) differs from #streams (%u)", n_models, n_streams);
	}

	if (samples.hasMissingData ()) {
		ISMissingData samples_h (&samples);
		for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
			if (!models[n_model]->isTrained ()) {
				samples_h.setStream(n_streams == 1 ? 0 : n_model);
				models[n_model]->train (samples_h, n_model);
			}
		}
	} else {
		for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
			if (!models[n_model]->isTrained ()) {		
				models[n_model]->train(samples, n_streams == 1 ? 0 : n_model);
			}
		}
	}

	_is_trained = true;

	return true;
}
Пример #14
0
bool FeatureFusion::train (ssi_size_t n_models,
	IModel **models,
	ISamples &samples) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	}

	_n_streams = samples.getStreamSize ();
	_n_classes = samples.getClassSize ();
	_n_models  = n_models;

	//initialize weights
	ssi_real_t **weights = new ssi_real_t*[n_models];
	for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
		weights[n_model] = new ssi_real_t[_n_classes+1];		
	}

	if (samples.hasMissingData ()) {

		_handle_md = true;

		ISMissingData samples_h (&samples);
		Evaluation eval;
		
		if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) {
			ssi_print("\nMissing data detected.\n");
		}
		
		//models[0] is featfuse_model, followed by singlechannel_models
		ISMergeDim ffusionSamples (&samples);
		ISMissingData ffusionSamples_h (&ffusionSamples);
		ffusionSamples_h.setStream(0);
		if (!models[0]->isTrained ()) { models[0]->train (ffusionSamples_h, 0); }

		if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) {
			eval.eval (*models[0], ffusionSamples_h, 0);
			eval.print();
		}
		//dummy weights for fused model
		for (ssi_size_t n_class = 0; n_class < _n_classes; n_class++) {
			weights[0][n_class] = 0.0f;
		}		
		weights[0][_n_classes] = 0.0f;	
		
		for (ssi_size_t n_model = 1; n_model < n_models; n_model++) {
			
			if (!models[n_model]->isTrained ()) {
				samples_h.setStream (n_model - 1);
				models[n_model]->train (samples_h, n_model - 1);
			}

			eval.eval (*models[n_model], samples_h, n_model - 1);

			if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) {
				eval.print();
			}

			for (ssi_size_t n_class = 0; n_class < _n_classes; n_class++) {
				weights[n_model][n_class] = eval.get_class_prob (n_class);
			}		
			weights[n_model][_n_classes] = eval.get_classwise_prob ();	
		}

		//calculate fillers
		_filler = new ssi_size_t[_n_streams];
		for (ssi_size_t n_fill = 0; n_fill < _n_streams; n_fill++) {
			_filler[n_fill] = 1;
			ssi_real_t filler_weight = weights[1][_n_classes];
			for (ssi_size_t n_model = 2; n_model < n_models; n_model++) {
				if (filler_weight < weights[n_model][_n_classes]) {
					_filler[n_fill] = n_model;
					filler_weight = weights[n_model][_n_classes];
				}
			}
			weights[_filler[n_fill]][_n_classes] = 0.0f;
		}
		if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) {
			ssi_print("\nfiller:\n");
			for (ssi_size_t n_model = 0; n_model < _n_streams; n_model++) {
				ssi_print("%d ", _filler[n_model]);
			}ssi_print("\n");
		}
	
	}
	else{

		_handle_md = false;

		if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) {
			ssi_print("\nNo missing data detected.\n");
		}
		ISMergeDim ffusionSamples (&samples);
		if (!models[0]->isTrained ()) { models[0]->train (ffusionSamples, 0); }
		//dummy
		_filler = new ssi_size_t[_n_streams];
		for (ssi_size_t n_fill = 0; n_fill < _n_streams; n_fill++) {
			_filler[n_fill] = 0;
		}
	}

	if (weights) {
		for (ssi_size_t n_model = 0; n_model < _n_models; n_model++) {
			delete[] weights[n_model];
		}
		delete[] weights;
		weights = 0;
	}

	return true;
}
Пример #15
0
bool WeightedMajorityVoting::train (ssi_size_t n_models,
	IModel **models,
	ISamples &samples) {

	if (samples.getSize () == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (samples.getStreamSize () != n_models) {
		ssi_wrn ("#models (%u) differs from #streams (%u)", n_models, samples.getStreamSize ());
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	}  

	_n_streams = samples.getStreamSize ();
	_n_classes = samples.getClassSize ();
	_n_models  = n_models;

	_weights = new ssi_real_t*[n_models];
	for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
		_weights[n_model] = new ssi_real_t[_n_classes+1];		
	}

	if (samples.hasMissingData ()) {
		ISMissingData samples_h (&samples);
		Evaluation eval;
		for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
			if (!models[n_model]->isTrained ()) {
				samples_h.setStream (n_model);
				models[n_model]->train (samples_h, n_model);
			}
			eval.eval (*models[n_model], samples_h, n_model);
			for (ssi_size_t n_class = 0; n_class < _n_classes; n_class++) {
				_weights[n_model][n_class] = eval.get_class_prob (n_class);
			}		
			_weights[n_model][_n_classes] = eval.get_classwise_prob ();	
		}
	}
	else{
		Evaluation eval;
		for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
			if (!models[n_model]->isTrained ()) { models[n_model]->train (samples, n_model); }
			eval.eval (*models[n_model], samples, n_model);
			for (ssi_size_t n_class = 0; n_class < _n_classes; n_class++) {
				_weights[n_model][n_class] = eval.get_class_prob (n_class);
			}		
			_weights[n_model][_n_classes] = eval.get_classwise_prob ();
		}		
	}

	if (ssi_log_level >= SSI_LOG_LEVEL_DEBUG) {
		ssi_print("\nClassifier Weights: \n");
		for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
			for (ssi_size_t n_class = 0; n_class < _n_classes; n_class++) {
				ssi_print ("%f ", _weights[n_model][n_class]);
			}
			ssi_print ("%f\n", _weights[n_model][_n_classes]);
		}
	}

	return true;
}
Пример #16
0
bool SVM::train (ISamples &samples,
	ssi_size_t stream_index) {

	if (_options.seed > 0) {
		srand(_options.seed);
	} else {
		srand(ssi_time_ms());
	}

	ISamples *s_balance = 0;
	switch (_options.balance) {
	case BALANCE::OFF: {
		s_balance = &samples;
		break;
	}
	case BALANCE::OVER: {		
		s_balance = new ISOverSample(&samples);
		ssi_pcast(ISOverSample, s_balance)->setOver(ISOverSample::RANDOM);
		ssi_msg(SSI_LOG_LEVEL_BASIC, "balance training set '%u' -> '%u'", samples.getSize(), s_balance->getSize());
		break;
	}
	case BALANCE::UNDER: {		
		s_balance = new ISUnderSample(&samples);
		ssi_pcast(ISUnderSample, s_balance)->setUnder(ISUnderSample::RANDOM);
		ssi_msg(SSI_LOG_LEVEL_BASIC, "balance training set '%u' -> '%u'", samples.getSize(), s_balance->getSize());
		break;
	}
	}

	_n_samples = s_balance->getSize();

	if (_n_samples == 0) {
		ssi_wrn ("empty sample list");
		return false;
	}

	if (isTrained ()) {
		ssi_wrn ("already trained");
		return false;
	}

	_n_classes = s_balance->getClassSize();
	_n_features = s_balance->getStream(stream_index).dim;
	ssi_size_t elements = _n_samples * (_n_features + 1);

	init_class_names(*s_balance);

	_problem = new svm_problem;
	_problem->l = ssi_cast (int, _n_samples);
	_problem->y = new double[_problem->l];
	_problem->x = new svm_node *[_problem->l];	

	s_balance->reset();
	ssi_sample_t *sample;
	int n_sample = 0;
	float *ptr = 0;
	svm_node *node = 0;
	while (sample = s_balance->next()) {
		ptr = ssi_pcast (float, sample->streams[stream_index]->ptr);		
		_problem->x[n_sample] = new svm_node[_n_features + 1];
		_problem->y[n_sample] = ssi_cast (float, sample->class_id);
		node = _problem->x[n_sample];
		for (ssi_size_t nfeat = 0; nfeat < _n_features; nfeat++) {
			node->index = nfeat+1;
            node->value = *ptr;
            ptr++;
			++node;
		}
		node->index = -1;		
		++n_sample;
	}

	if(_options.params.gamma == 0 && _n_features > 0) {
		_options.params.gamma = 1.0 / _n_features;
	}
	
	if (_options.params.kernel_type == PRECOMPUTED) {
		int max_index = ssi_cast (int, _n_features);
		for (int i = 0; i < _problem->l; i++) {
			if (_problem->x[i][0].index != 0) {
				ssi_err ("wrong input format: first column must be 0:sample_serial_number");				
			}
			if ((int)_problem->x[i][0].value <= 0 || (int)_problem->x[i][0].value > max_index) {
				ssi_err ("wrong input format: sample_serial_number out of range");
			}
		}
	}