VOID STDMETHODCALLTYPE CSimdeviceQueue::OnWrite( _In_ IWDFIoQueue *pWdfQueue, _In_ IWDFIoRequest *pWdfRequest, _In_ SIZE_T BytesToWrite ) /*++ Routine Description: Write dispatch routine IQueueCallbackWrite Arguments: pWdfQueue - Framework Queue instance pWdfRequest - Framework Request instance BytesToWrite - Length of bytes in the write buffer Allocate and copy data to local buffer Return Value: VOID --*/ { HRESULT hr; IWDFMemory* pRequestMemory = NULL; IWDFIoRequest2 * pWdfRequest2 = NULL; UNREFERENCED_PARAMETER(pWdfQueue); // // Handle Zero length writes. // if (!BytesToWrite) { pWdfRequest->CompleteWithInformation(S_OK, 0); return; } if( BytesToWrite > MAX_WRITE_LENGTH ) { pWdfRequest->CompleteWithInformation(HRESULT_FROM_WIN32(ERROR_MORE_DATA), 0); return; } // Get memory object hr = pWdfRequest->QueryInterface(IID_PPV_ARGS(&pWdfRequest2)); if (FAILED(hr)) { pWdfRequest->Complete(hr); return; } // Release previous buffer if set if( m_Buffer != NULL ) { delete [] m_Buffer; m_Buffer = NULL; m_Length = 0L; } // Allocate Buffer m_Buffer = new UCHAR[BytesToWrite]; if (m_Buffer == NULL) { pWdfRequest->Complete(E_OUTOFMEMORY); m_Length = 0L; return; } hr = pWdfRequest2->RetrieveInputMemory(&pRequestMemory); if (FAILED(hr)) { goto Exit; } // Copy from memory object to our buffer hr = pRequestMemory->CopyToBuffer(0, m_Buffer, BytesToWrite); if (FAILED(hr)) { goto Exit; } // // Save the information so that we can use it // to complete the request later. // Lock(); m_Length = (ULONG) BytesToWrite; m_XferredBytes = m_Length; m_CurrentRequest = pWdfRequest2; pWdfRequest2 = NULL; Unlock(); Exit: if (FAILED(hr)) { pWdfRequest2->CompleteWithInformation(hr, 0); delete [] m_Buffer; m_Buffer = NULL; } SAFE_RELEASE(pRequestMemory); SAFE_RELEASE(pWdfRequest2); return; }
VOID STDMETHODCALLTYPE CMyQueue::OnDeviceIoControl( _In_ IWDFIoQueue *pWdfQueue, _In_ IWDFIoRequest *pWdfRequest, _In_ ULONG ControlCode, _In_ SIZE_T InputBufferSizeInBytes, _In_ SIZE_T OutputBufferSizeInBytes ) /*++ Routine Description: DeviceIoControl dispatch routine Arguments: pWdfQueue - Framework Queue instance pWdfRequest - Framework Request instance ControlCode - IO Control Code InputBufferSizeInBytes - Length of input buffer OutputBufferSizeInBytes - Length of output buffer Always succeeds DeviceIoIoctl Return Value: VOID --*/ { UNREFERENCED_PARAMETER(OutputBufferSizeInBytes); UNREFERENCED_PARAMETER(InputBufferSizeInBytes); UNREFERENCED_PARAMETER(pWdfQueue); HRESULT hr = S_OK; SIZE_T reqCompletionInfo = 0; IWDFMemory *inputMemory = NULL; IWDFMemory *outputMemory = NULL; UINT i; WUDF_TEST_DRIVER_ASSERT(pWdfRequest); WUDF_TEST_DRIVER_ASSERT(m_Device); switch (ControlCode) { case IOCTL_SERIAL_SET_BAUD_RATE: { // // This is a driver for a virtual serial port. Since there is no // actual hardware, we just store the baud rate and don't do // anything with it. // SERIAL_BAUD_RATE baudRateBuffer = {0}; pWdfRequest->GetInputMemory(&inputMemory); if (NULL == inputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { hr = inputMemory->CopyToBuffer(0, (void*) &baudRateBuffer, sizeof(SERIAL_BAUD_RATE)); } if (SUCCEEDED(hr)) { m_Device->SetBaudRate(baudRateBuffer.BaudRate); } break; } case IOCTL_SERIAL_GET_BAUD_RATE: { SERIAL_BAUD_RATE baudRateBuffer = {0}; baudRateBuffer.BaudRate = m_Device->GetBaudRate(); pWdfRequest->GetOutputMemory(&outputMemory); if (NULL == outputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { hr = outputMemory->CopyFromBuffer(0, (void*) &baudRateBuffer, sizeof(SERIAL_BAUD_RATE)); } if (SUCCEEDED(hr)) { reqCompletionInfo = sizeof(SERIAL_BAUD_RATE); } break; } case IOCTL_SERIAL_SET_MODEM_CONTROL: { // // This is a driver for a virtual serial port. Since there is no // actual hardware, we just store the modem control register // configuration and don't do anything with it. // ULONG *pModemControlRegister = NULL; pWdfRequest->GetInputMemory(&inputMemory); if (NULL == inputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { pModemControlRegister = m_Device->GetModemControlRegisterPtr(); WUDF_TEST_DRIVER_ASSERT(pModemControlRegister); hr = inputMemory->CopyToBuffer(0, (void*) pModemControlRegister, sizeof(ULONG)); } break; } case IOCTL_SERIAL_GET_MODEM_CONTROL: { ULONG *pModemControlRegister = NULL; pWdfRequest->GetOutputMemory(&outputMemory); if (NULL == outputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { pModemControlRegister = m_Device->GetModemControlRegisterPtr(); WUDF_TEST_DRIVER_ASSERT(pModemControlRegister); hr = outputMemory->CopyFromBuffer(0, (void*) pModemControlRegister, sizeof(ULONG)); } if (SUCCEEDED(hr)) { reqCompletionInfo = sizeof(ULONG); } break; } case IOCTL_SERIAL_SET_FIFO_CONTROL: { // // This is a driver for a virtual serial port. Since there is no // actual hardware, we just store the FIFO control register // configuration and don't do anything with it. // ULONG *pFifoControlRegister = NULL; pWdfRequest->GetInputMemory(&inputMemory); if (NULL == inputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { pFifoControlRegister = m_Device->GetFifoControlRegisterPtr(); hr = inputMemory->CopyToBuffer(0, (void*) pFifoControlRegister, sizeof(ULONG)); } break; } case IOCTL_SERIAL_GET_LINE_CONTROL: { ULONG *pLineControlRegister = NULL; SERIAL_LINE_CONTROL lineControl = {0}; ULONG lineControlSnapshot; pLineControlRegister = m_Device->GetLineControlRegisterPtr(); WUDF_TEST_DRIVER_ASSERT(pLineControlRegister); // // Take a snapshot of the line control register variable // lineControlSnapshot = *pLineControlRegister; // // Decode the word length // if ((lineControlSnapshot & SERIAL_DATA_MASK) == SERIAL_5_DATA) { lineControl.WordLength = 5; } else if ((lineControlSnapshot & SERIAL_DATA_MASK) == SERIAL_6_DATA) { lineControl.WordLength = 6; } else if ((lineControlSnapshot & SERIAL_DATA_MASK) == SERIAL_7_DATA) { lineControl.WordLength = 7; } else if ((lineControlSnapshot & SERIAL_DATA_MASK) == SERIAL_8_DATA) { lineControl.WordLength = 8; } // // Decode the parity // if ((lineControlSnapshot & SERIAL_PARITY_MASK) == SERIAL_NONE_PARITY) { lineControl.Parity = NO_PARITY; } else if ((lineControlSnapshot & SERIAL_PARITY_MASK) == SERIAL_ODD_PARITY) { lineControl.Parity = ODD_PARITY; } else if ((lineControlSnapshot & SERIAL_PARITY_MASK) == SERIAL_EVEN_PARITY) { lineControl.Parity = EVEN_PARITY; } else if ((lineControlSnapshot & SERIAL_PARITY_MASK) == SERIAL_MARK_PARITY) { lineControl.Parity = MARK_PARITY; } else if ((lineControlSnapshot & SERIAL_PARITY_MASK) == SERIAL_SPACE_PARITY) { lineControl.Parity = SPACE_PARITY; } // // Decode the length of the stop bit // if (lineControlSnapshot & SERIAL_2_STOP) { if (lineControl.WordLength == 5) { lineControl.StopBits = STOP_BITS_1_5; } else { lineControl.StopBits = STOP_BITS_2; } } else { lineControl.StopBits = STOP_BIT_1; } // // Copy the information that was decoded to the caller's buffer // pWdfRequest->GetOutputMemory(&outputMemory); if (NULL == outputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { hr = outputMemory->CopyFromBuffer(0, (void*) &lineControl, sizeof(SERIAL_LINE_CONTROL)); } if (SUCCEEDED(hr)) { reqCompletionInfo = sizeof(SERIAL_LINE_CONTROL); } break; } case IOCTL_SERIAL_SET_LINE_CONTROL: { ULONG *pLineControlRegister = NULL; SERIAL_LINE_CONTROL lineControl = {0}; UCHAR lineControlData = 0; UCHAR lineControlStop = 0; UCHAR lineControlParity = 0; ULONG lineControlSnapshot; ULONG lineControlNew; ULONG lineControlPrevious; pLineControlRegister = m_Device->GetLineControlRegisterPtr(); WUDF_TEST_DRIVER_ASSERT(pLineControlRegister); // // This is a driver for a virtual serial port. Since there is no // actual hardware, we just store the line control register // configuration and don't do anything with it. // pWdfRequest->GetInputMemory(&inputMemory); if (NULL == inputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { hr = inputMemory->CopyToBuffer(0, (void*) &lineControl, sizeof(SERIAL_LINE_CONTROL)); } // // Bits 0 and 1 of the line control register // if (SUCCEEDED(hr)) { switch (lineControl.WordLength) { case 5: lineControlData = SERIAL_5_DATA; m_Device->SetValidDataMask(0x1f); break; case 6: lineControlData = SERIAL_6_DATA; m_Device->SetValidDataMask(0x3f); break; case 7: lineControlData = SERIAL_7_DATA; m_Device->SetValidDataMask(0x7f); break; case 8: lineControlData = SERIAL_8_DATA; m_Device->SetValidDataMask(0xff); break; default: hr = E_INVALIDARG; } } // // Bit 2 of the line control register // if (SUCCEEDED(hr)) { switch (lineControl.StopBits) { case STOP_BIT_1: lineControlStop = SERIAL_1_STOP; break; case STOP_BITS_1_5: if (lineControlData != SERIAL_5_DATA) { hr = E_INVALIDARG; break; } lineControlStop = SERIAL_1_5_STOP; break; case STOP_BITS_2: if (lineControlData == SERIAL_5_DATA) { hr = E_INVALIDARG; break; } lineControlStop = SERIAL_2_STOP; break; default: hr = E_INVALIDARG; } } // // Bits 3, 4 and 5 of the line control register // if (SUCCEEDED(hr)) { switch (lineControl.Parity) { case NO_PARITY: lineControlParity = SERIAL_NONE_PARITY; break; case EVEN_PARITY: lineControlParity = SERIAL_EVEN_PARITY; break; case ODD_PARITY: lineControlParity = SERIAL_ODD_PARITY; break; case SPACE_PARITY: lineControlParity = SERIAL_SPACE_PARITY; break; case MARK_PARITY: lineControlParity = SERIAL_MARK_PARITY; break; default: hr = E_INVALIDARG; } } // // Update our line control register variable atomically // i=0; do { i++; if ((i & 0xf) == 0) { // // We've been spinning in a loop for a while trying to // update the line control register variable atomically. // Yield the CPU for other threads for a while. // SwitchToThread(); } lineControlSnapshot = *pLineControlRegister; lineControlNew = (lineControlSnapshot & SERIAL_LCR_BREAK) | (lineControlData | lineControlParity | lineControlStop); lineControlPrevious = InterlockedCompareExchange((LONG *) pLineControlRegister, lineControlNew, lineControlSnapshot); } while (lineControlPrevious != lineControlSnapshot); break; } case IOCTL_SERIAL_GET_TIMEOUTS: { SERIAL_TIMEOUTS timeoutValues = {0}; pWdfRequest->GetOutputMemory(&outputMemory); if (NULL == outputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { m_Device->GetTimeouts(&timeoutValues); hr = outputMemory->CopyFromBuffer(0, (void*) &timeoutValues, sizeof(timeoutValues)); } if (SUCCEEDED(hr)) { reqCompletionInfo = sizeof(SERIAL_TIMEOUTS); } break; } case IOCTL_SERIAL_SET_TIMEOUTS: { SERIAL_TIMEOUTS timeoutValues = {0}; pWdfRequest->GetInputMemory(&inputMemory); if (NULL == inputMemory) { hr = HRESULT_FROM_WIN32(ERROR_INVALID_DATA); } if (SUCCEEDED(hr)) { hr = inputMemory->CopyToBuffer(0, (void*) &timeoutValues, sizeof(timeoutValues)); } if (SUCCEEDED(hr)) { if ((timeoutValues.ReadIntervalTimeout == MAXULONG) && (timeoutValues.ReadTotalTimeoutMultiplier == MAXULONG) && (timeoutValues.ReadTotalTimeoutConstant == MAXULONG)) { hr = E_INVALIDARG; } } if (SUCCEEDED(hr)) { m_Device->SetTimeouts(timeoutValues); } break; } case IOCTL_SERIAL_SET_QUEUE_SIZE: case IOCTL_SERIAL_SET_DTR: case IOCTL_SERIAL_SET_WAIT_MASK: case IOCTL_SERIAL_SET_RTS: case IOCTL_SERIAL_CLR_RTS: case IOCTL_SERIAL_SET_XON: case IOCTL_SERIAL_SET_XOFF: case IOCTL_SERIAL_SET_CHARS: case IOCTL_SERIAL_GET_CHARS: case IOCTL_SERIAL_GET_HANDFLOW: case IOCTL_SERIAL_SET_HANDFLOW: case IOCTL_SERIAL_RESET_DEVICE: { // // NOTE: The application expects STATUS_SUCCESS for these IOCTLs. // so don't merge this with default. // break; } default: { hr = E_INVALIDARG; } } // // clean up // if (inputMemory) { inputMemory->Release(); } if (outputMemory) { outputMemory->Release(); } // // complete the request // pWdfRequest->CompleteWithInformation(hr, reqCompletionInfo); return; }