void profit_create_vars(graph g, IloModel model, IloNumVarArray x, IloNumVarArray p, IloNumVarArray z, int **columns) { IloEnv env = model.getEnv(); string s; assignment_vars(g, model, x, columns); for(int j = 0; j < g->items; j++) { s = "p_" + itos(j); p.add(IloNumVar(env, 0.0, boundp(j), ILOFLOAT, s.c_str())); // p.add(IloNumVar(env, lowerp(j), boundp(j), ILOFLOAT, s.c_str())); } for(int i = 0; i < g->bidders; i++) { s = "z_" + itos(i); z.add(IloNumVar(env, 0.0, boundu(i), ILOFLOAT, s.c_str())); } }
void addInitColumn(IloNumVarArray lambda, IloObjective rmpObj, IloRangeArray maintConEng, IloRangeArray removeMod, IloRangeArray convex, IloNumArray2 addXCol, IloNumArray addZCol, const IloNumArray compCosts, const IloNumArray convexityCoef) { // loop counter IloInt t; // counter for objective function coefficient for lambda // variable to be added. IloNum lambdaObjCoef = 0; // function assumes addXCol and addZCol contains proper values. // calculate objective function coefficient lambdaObjCoef for (t = 0; t < TIME_SPAN; t++) { // for each fixed t: scalar product of x[m]* vector and // component costs vector compCosts[m]: lambdaObjCoef += IloScalProd(addXCol[t],compCosts); // also clear the addXCol subarrays as soon as they // have been used addXCol[t].clear(); } // now add this column and it's associated lambda variable to the RMP. lambda.add(IloNumVar(rmpObj(lambdaObjCoef) + maintConEng(addZCol) + removeMod(addZCol) + convex(convexityCoef), 0.0, 1.0)); // clear addZCol num array. addZCol.clear(); } // END of addColumn
static void populatebycolumn (IloModel model, IloNumVarArray x, IloRangeArray c) { IloEnv env = model.getEnv(); IloObjective obj = IloMaximize(env); c.add(IloRange(env, -IloInfinity, 20.0)); c.add(IloRange(env, -IloInfinity, 30.0)); x.add(IloNumVar(obj(1.0) + c[0](-1.0) + c[1]( 1.0), 0.0, 40.0)); x.add(obj(2.0) + c[0]( 1.0) + c[1](-3.0)); x.add(obj(3.0) + c[0]( 1.0) + c[1]( 1.0)); model.add(obj); model.add(c); } // END populatebycolumn
void addColumn(IloCplex subSolver, IloNumVarArray2 x, IloNumVarArray z, IloNumVarArray lambda, IloObjective rmpObj, IloRangeArray maintConEng, IloRangeArray removeMod, IloRangeArray convex, IloNumArray2 addXCol, IloNumArray addZCol, const IloNumArray compCosts, const IloNumArray convexityCoef) { // loop counter IloInt t; // counter for objective function coefficient for lambda // variable to be added. IloNum lambdaObjCoef = 0; // extract subproblem-optimal solution values // (into IloNumArrays addXCol (2d) and addZCol (1d)). // z values: subSolver.getValues(addZCol,z); //cout << endl << endl << "z = " << endl << addZCol << endl; //cin.get(); // !!! OBS !!! // here we might want to save these z values some column pool's custom-nitted class // array. Or to be specific, we want to add the indexes for NON-ZERO-ENTRIES in addZCol // to our class that keep place of columns. // E.g., given variable lambda(m)_(q_m), we want to know in our own class object, // given (m)(q_m), the indexes of non-zeros in that Z column. // and for each t... for (t = 0; t < TIME_SPAN; t++) { // x values: subSolver.getValues(addXCol[t],x[t]); //cout << endl << endl << "x[t=" << t << "] =" << endl << addXCol[t] << endl; } //cin.get(); // calculate objective function coefficient lambdaObjCoef for (t = 0; t < TIME_SPAN; t++) { // for each fixed t: scalar product of x[m]* vector and // component costs vector compCosts[m]: lambdaObjCoef += IloScalProd(addXCol[t],compCosts); // also clear the addXCol subarrays as soon as they // have been used addXCol[t].clear(); } // now add this column and it's associated lambda variable to the RMP. lambda.add(IloNumVar(rmpObj(lambdaObjCoef) + maintConEng(addZCol) + removeMod(addZCol) + convex(convexityCoef), 0.0, 1.0)); // clear addZCol num array. addZCol.clear(); } // END of addColumn
static void populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c) { IloEnv env = model.getEnv(); x.add(IloNumVar(env, 0.0, 40.0)); x.add(IloNumVar(env)); x.add(IloNumVar(env)); x.add(IloNumVar(env, 2.0, 3.0, ILOINT)); model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2] + x[3])); c.add( - x[0] + x[1] + x[2] + 10 * x[3] <= 20); c.add( x[0] - 3 * x[1] + x[2] <= 30); c.add( x[1] - 3.5* x[3] == 0); model.add(c); } // END populatebyrow
static void populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c) { IloEnv env = model.getEnv(); x.add(IloNumVar(env, 0.0, 40.0)); x.add(IloNumVar(env)); x.add(IloNumVar(env)); model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2] - 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] + 11*x[2]*x[2] - 12*x[0]*x[1] - 23*x[1]*x[2] ) )); c.add( - x[0] + x[1] + x[2] <= 20); c.add( x[0] - 3 * x[1] + x[2] <= 30); model.add(c); } // END populatebyrow
void PopulateFromGraph(IloModel model, IloNumVarArray s, IloRangeArray c){ IloEnv env = model.getEnv(); // Used n+1 for accomodating an extra variable // For being able to write the objective function for(int i = 0; i <= n; i++) s.add(IloNumVar(env)); }
void generateProblem(const ILPModel& m, IloModel& model, IloNumVarArray& x, IloRangeArray& con) { IloEnv env = model.getEnv(); IloObjective obj = (m.obj == MINIMIZE ? IloMinimize(env) : IloMaximize(env)); for (unsigned long v = 0; v < m.numberOfVariables(); ++v) { switch (m.x[v].type) { case FLT: x.add(IloNumVar(env, m.x[v].lowerBound, m.x[v].upperBound, IloNumVar::Float)); break; case BIN: x.add(IloNumVar(env, m.x[v].lowerBound, m.x[v].upperBound, IloNumVar::Bool)); break; default: x.add(IloNumVar(env, m.x[v].lowerBound, m.x[v].upperBound, IloNumVar::Int)); } obj.setLinearCoef(x[v], m.c[v]); x[v].setName(m.varDesc[v].c_str()); } for (unsigned long c = 0; c < m.numberOfConstraints(); ++c) { switch (m.ops[c]) { case LESS_EQUAL: con.add(IloRange(env, -IloInfinity, m.b[c])); break; case EQUAL: con.add(IloRange(env, m.b[c], m.b[c])); break; case GREATER_EQUAL: con.add(IloRange(env, m.b[c], IloInfinity)); } for (const pair<uint32_t, double>& p : m.A[c]) con[c].setLinearCoef(x[p.first], p.second); con[c].setName(m.conDesc[c].c_str()); } model.add(obj); model.add(con); }
static void populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c) { IloEnv env = model.getEnv(); x.add(IloNumVar(env, -1.0, 1.0)); x.add(IloNumVar(env, 0.0, 1.0)); model.add(IloMinimize(env, 0.5 * (-3*x[0]*x[0] - 3*x[1]*x[1] + - 1*x[0]*x[1] ) )); c.add( - x[0] + x[1] >= 0); c.add( x[0] + x[1] >= 0); model.add(c); } // END populatebyrow
static void populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c) { IloEnv env = model.getEnv(); x.add(IloNumVar(env, 0.0, 40.0)); x.add(IloNumVar(env, 0.0, IloInfinity, ILOINT)); x.add(IloNumVar(env, 0.0, IloInfinity, ILOINT)); x.add(IloNumVar(env, 2.0, 3.0, ILOINT)); model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2] + x[3])); c.add( - x[0] + x[1] + x[2] + 10 * x[3] <= 20); c.add( x[0] - 3 * x[1] + x[2] <= 30); c.add( x[1] - 3.5* x[3] == 0); model.add(c); IloNumVarArray sosvar(env, 2); IloNumArray sosval(env, 2); sosvar[0] = x[2]; sosvar[1] = x[3]; sosval[0] = 25.0; sosval[1] = 18.0; model.add(IloSOS1(model.getEnv(), sosvar, sosval)); } // END populatebyrow
// This function creates the following model: // Minimize // obj: x1 + x2 + x3 + x4 + x5 + x6 // Subject To // c1: x1 + x2 + x5 = 8 // c2: x3 + x5 + x6 = 10 // q1: [ -x1^2 + x2^2 + x3^2 ] <= 0 // q2: [ -x4^2 + x5^2 ] <= 0 // Bounds // x2 Free // x3 Free // x5 Free // End // which is a second order cone program in standard form. // The function returns objective, variables and constraints in the // values obj, vars and rngs. // The function also sets up cone so that for a column j we have // cone[j] >= 0 Column j is in a cone constraint and is the // cone's head variable. // cone[j] == NOT_CONE_HEAD Column j is in a cone constraint but is // not the cone's head variable.. // cone[j] == NOT_IN_CONE Column j is not contained in any cone constraint. static void createmodel (IloModel& model, IloObjective &obj, IloNumVarArray &vars, IloRangeArray &rngs, IloIntArray& cone) { // The indices we assign as user objects to the modeling objects. // We define them as static data so that we don't have to worry about // dynamic memory allocation/leakage. static int indices[] = { 0, 1, 2, 3, 4, 5, 6 }; IloEnv env = model.getEnv(); // Create variables. IloNumVar x1(env, 0, IloInfinity, "x1"); IloNumVar x2(env, -IloInfinity, IloInfinity, "x2"); IloNumVar x3(env, -IloInfinity, IloInfinity, "x3"); IloNumVar x4(env, 0, IloInfinity, "x4"); IloNumVar x5(env, -IloInfinity, IloInfinity, "x5"); IloNumVar x6(env, 0, IloInfinity, "x6"); // Create objective function and immediately store it in return value. obj = IloMinimize(env, x1 + x2 + x3 + x4 + x5 + x6); // Create constraints. IloRange c1(env, 8, x1 + x2 + x5, 8, "c1"); IloRange c2(env, 10, x3 + x5 + x6, 10, "c2"); IloRange q1(env, -IloInfinity, -x1*x1 + x2*x2 + x3*x3, 0, "q1"); cone.add(2); // x1, cone head of constraint at index 2 cone.add(NOT_CONE_HEAD); // x2 cone.add(NOT_CONE_HEAD); // x3 IloRange q2(env, -IloInfinity, -x4*x4 + x5*x5, 0, "q2"); cone.add(3); // x4, cone head of constraint at index 3 cone.add(NOT_CONE_HEAD); // x5 cone.add(NOT_IN_CONE); // x6 // Setup model. model.add(obj); model.add(obj); model.add(c1); model.add(c2); model.add(q1); model.add(q2); // Setup return values. vars.add(x1); vars.add(x2); vars.add(x3); vars.add(x4); vars.add(x5); vars.add(x6); rngs.add(c1); rngs.add(c2); rngs.add(q1); rngs.add(q2); // We set the user object for each modeling object to its index in the // respective array. This makes the code in checkkkt a little simpler. for (IloInt i = 0; i < vars.getSize(); ++i) vars[i].setObject(&indices[i]); for (IloInt i = 0; i < rngs.getSize(); ++i) rngs[i].setObject(&indices[i]); }
// This routine set up the IloCplex algorithm to solve the worker LP, and // creates the worker LP (i.e., the dual of flow constraints and // capacity constraints of the flow MILP) // // Modeling variables: // forall k in V0, i in V: // u(k,i) = dual variable associated with flow constraint (k,i) // // forall k in V0, forall (i,j) in A: // v(k,i,j) = dual variable associated with capacity constraint (k,i,j) // // Objective: // minimize sum(k in V0) sum((i,j) in A) x(i,j) * v(k,i,j) // - sum(k in V0) u(k,0) + sum(k in V0) u(k,k) // // Constraints: // forall k in V0, forall (i,j) in A: u(k,i) - u(k,j) <= v(k,i,j) // // Nonnegativity on variables v(k,i,j) // forall k in V0, forall (i,j) in A: v(k,i,j) >= 0 // void createWorkerLP(IloCplex cplex, IloNumVarArray v, IloNumVarArray u, IloObjective obj, IloInt numNodes) { IloInt i, j, k; IloEnv env = cplex.getEnv(); IloModel mod(env, "atsp_worker"); // Set up IloCplex algorithm to solve the worker LP cplex.extract(mod); cplex.setOut(env.getNullStream()); // Turn off the presolve reductions and set the CPLEX optimizer // to solve the worker LP with primal simplex method. cplex.setParam(IloCplex::Reduce, 0); cplex.setParam(IloCplex::RootAlg, IloCplex::Primal); // Create variables v(k,i,j) forall k in V0, (i,j) in A // For simplicity, also dummy variables v(k,i,i) are created. // Those variables are fixed to 0 and do not partecipate to // the constraints. IloInt numArcs = numNodes * numNodes; IloInt vNumVars = (numNodes-1) * numArcs; IloNumVarArray vTemp(env, vNumVars, 0, IloInfinity); for (k = 1; k < numNodes; ++k) { for (i = 0; i < numNodes; ++i) { vTemp[(k-1)*numArcs + i *numNodes + i].setBounds(0, 0); } } v.clear(); v.add(vTemp); vTemp.end(); mod.add(v); // Set names for variables v(k,i,j) for (k = 1; k < numNodes; ++k) { for(i = 0; i < numNodes; ++i) { for(j = 0; j < numNodes; ++j) { char varName[100]; sprintf(varName, "v.%d.%d.%d", (int) k, (int) i, (int) j); v[(k-1)*numArcs + i*numNodes + j].setName(varName); } } } // Associate indices to variables v(k,i,j) IloIntArray vIndex(env, vNumVars); for (j = 0; j < vNumVars; ++j) { vIndex[j] = j; v[j].setObject(&vIndex[j]); } // Create variables u(k,i) forall k in V0, i in V IloInt uNumVars = (numNodes-1) * numNodes; IloNumVarArray uTemp(env, uNumVars, -IloInfinity, IloInfinity); u.clear(); u.add(uTemp); uTemp.end(); mod.add(u); // Set names for variables u(k,i) for (k = 1; k < numNodes; ++k) { for(i = 0; i < numNodes; ++i) { char varName[100]; sprintf(varName, "u.%d.%d", (int) k, (int) i); u[(k-1)*numNodes + i].setName(varName); } } // Associate indices to variables u(k,i) IloIntArray uIndex(env, uNumVars); for (j = 0; j < uNumVars; ++j) { uIndex[j] = vNumVars + j; u[j].setObject(&uIndex[j]); } // Initial objective function is empty obj.setSense(IloObjective::Minimize); mod.add(obj); // Add constraints: // forall k in V0, forall (i,j) in A: u(k,i) - u(k,j) <= v(k,i,j) for (k = 1; k < numNodes; ++k) { for(i = 0; i < numNodes; ++i) { for(j = 0; j < numNodes; ++j) { if ( i != j ) { IloExpr expr(env); expr -= v[(k-1)*numArcs + i*(numNodes) + j]; expr += u[(k-1)*numNodes + i]; expr -= u[(k-1)*numNodes + j]; mod.add(expr <= 0); expr.end(); } } } } }// END createWorkerLP
Example(IloEnv env) : nblocks(0), model(env), vars(env), ranges(env) { // Model data. // fixed[] is the fixed cost for opening a facility, // cost[i,j] is the cost for serving customer i from facility j. static double const fixed[] = { 2.0, 3.0, 3.0 }; static double const cost[] = { 2.0, 3.0, 4.0, 5.0, 7.0, 4.0, 3.0, 1.0, 2.0, 6.0, 5.0, 4.0, 2.0, 1.0, 3.0 }; #define NFACTORY ((CPXDIM)(sizeof(fixed) / sizeof(fixed[0]))) #define NCUSTOMER ((CPXDIM)((sizeof(cost) / sizeof(cost[0])) / NFACTORY)) nblocks = NCUSTOMER; IloExpr obj(env); // Create integer y variables. IloNumVarArray y(env); for (IloInt f = 0; f < NFACTORY; ++f) { std::stringstream s; s << "y" << f; IloIntVar v(env, 0, 1, s.str().c_str()); obj += fixed[f] * v; objMap[v] = fixed[f]; y.add(v); blockMap.insert(BlockMap::value_type(v, -1)); intersectMap.insert(IntersectMap::value_type(v, RowSet())); } // Create continuous x variables. IloNumVarArray x(env); for (IloInt f = 0; f < NFACTORY; ++f) { for (IloInt c = 0; c < NCUSTOMER; ++c) { std::stringstream s; s << "x" << f << "#" << c; IloNumVar v(env, 0.0, IloInfinity, s.str().c_str()); obj += v * cost[f * NCUSTOMER + c]; objMap[v] = cost[f * NCUSTOMER + c]; x.add(v); blockMap.insert(BlockMap::value_type(v, c)); intersectMap.insert(IntersectMap::value_type(v, RowSet())); } } vars.add(y); vars.add(x); model.add(vars); // Add objective function. model.add(IloMinimize(env, obj, "obj")); objSense = IloObjective::Minimize; obj.end(); // Satisfy each customer's demand. for (IloInt c = 0; c < NCUSTOMER; ++c) { std::stringstream s; s << "c1_" << c; IloRange r(env, 1.0, IloInfinity, s.str().c_str()); IloExpr lhs(env); for (IloInt f = 0; f < NFACTORY; ++f) { lhs += x[f * NCUSTOMER + c]; intersectMap[x[f * NCUSTOMER + c]].insert(r); } r.setExpr(lhs); ranges.add(r); lhs.end(); } // A factory must be open if we service from it. for (IloInt c = 0; c < NCUSTOMER; ++c) { for (IloInt f = 0; f < NFACTORY; ++f) { std::stringstream s; s << "c2_" << c << "#" << f; IloRange r(env, 0.0, IloInfinity, s.str().c_str()); intersectMap[x[f * NCUSTOMER + c]].insert(r); intersectMap[y[f]].insert(r); r.setExpr(-x[f * NCUSTOMER + c] + y[f]); ranges.add(r); } } // Capacity constraint. IloRange r(env, -IloInfinity, NFACTORY - 1, "c3"); IloExpr lhs(env); for (IloInt f = 0; f < NFACTORY; ++f) { lhs += y[f]; intersectMap[y[f]].insert(r); } r.setExpr(lhs); ranges.add(r); lhs.end(); model.add(ranges); #undef NFACTORY #undef NCUSTOMER }
void LpSolver::populatebyrow (CplexConverter& cplexConverter, IloModel model, IloNumVarArray x, IloRangeArray c) { IloEnv env = model.getEnv(); // CAPITAL LETTERS MEAN I NEED YOUR HELP, here is help // IloExpr cost(env); // Create Variables // cout << "size of var: " << cplexConverter.variables.size() << endl; for (int i = 0; i < cplexConverter.variables.size(); ++i){ IloNumVar iloVar(env, 0.0, cplexConverter.capacities[i], IloNumVar::Int); // cout << iloVar << endl; x.add(iloVar); } //Capacity Constraints for (auto &it : cplexConverter.atomicIdToVarIdDict){ IloExpr t(env); // cout << "adding constraint "; for (int j = 0; j < it.second.size(); j++){ // cout << "x[" << it.second[j] << "] + "; t += x[it.second[j]]; } // cout << endl; c.add(t <= cplexConverter.graph->atomicEdges[it.first]->capacity); // cout << c << endl; t.end(); } // other constraints for (auto nodePair : cplexConverter.graph->nodes){ // For all nodes Node* n = nodePair.second; if(n == cplexConverter.src){ // source constraints // IloExpr inFlow(env); IloExpr outFlow(env); for(auto &atoIn : n->atomicEdge_in){ int aeId = atoIn.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; outFlow += x[vId]; // cost += cplexConverter.graph->atomicEdges[cplexConverter.variables[vId].atomicEdgeId]->interest_rate * x[vId]; } } for (auto &atoOut : n->atomicEdge_out){ int aeId = atoOut.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; // inFlow += x[vId]; c.add(x[vId] == 0); // cost -= cplexConverter.graph->atomicEdges[cplexConverter.variables[vId].atomicEdgeId]->interest_rate * x[vId]; } } c.add(outFlow == cplexConverter.request); // inFlow.end(); outFlow.end(); } else if(n == cplexConverter.dest){ // destination constraints IloExpr inFlow(env); // IloExpr outFlow(env); for(auto &atoIn : n->atomicEdge_in){ int aeId = atoIn.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; // outFlow += x[vId]; c.add(x[vId] == 0); } } for (auto &atoOut : n->atomicEdge_out){ int aeId = atoOut.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; inFlow += x[vId]; } } c.add(inFlow == cplexConverter.request); inFlow.end(); // outFlow.end(); } else { // Monotonicity Constraints for (int i = 0; i < credNetConstants.totalIrs.size(); ++i){ IloExpr tempin(env); IloExpr tempout(env); for (auto &atoIn : n->atomicEdge_in){ int aeId = atoIn.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; if (cplexConverter.variables[vId].interest_rate <= credNetConstants.totalIrs[i]){ tempout += x[vId]; } } } for (auto &atoOut : n->atomicEdge_out){ int aeId = atoOut.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; if (cplexConverter.variables[vId].interest_rate <= credNetConstants.totalIrs[i]){ tempin += x[vId]; } } } c.add(tempout - tempin >= 0); tempout.end(); tempin.end(); } //Flow Constraints IloExpr inFlow(env); IloExpr outFlow(env); for(auto &atoIn : n->atomicEdge_in){ int aeId = atoIn.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; outFlow += x[vId]; } } for (auto &atoOut : n->atomicEdge_out){ int aeId = atoOut.second->atomicEdgeId; for (int j = 0; j < cplexConverter.atomicIdToVarIdDict[aeId].size(); j++){ // var Id int vId = cplexConverter.atomicIdToVarIdDict[aeId][j]; inFlow += x[vId]; } } c.add(inFlow - outFlow == 0); inFlow.end(); outFlow.end(); } } model.add(c); // model.add(IloMinimize(env, cost)); // model.add(IloMaximize(env,cost)); //option to minimize cost // cost.end(); } // END populatebyrow
static void populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c) { IloEnv env = model.getEnv(); IloNumArray costs(env); IloNumArray time(env); IloNumArray product(env); int costs_array[] = {1,1,1,10,1,12,2,2,5,10}; int time_array[] = {10,1,7,3,2,3,2,3,7,1}; int product_array[] = {0,3,1,2,-2,0,0,0,0,0}; for(int i=0;i<10;i++) costs.add(costs_array[i]); for(int i=0;i<10;i++) time.add(time_array[i]); for(int i=0;i<10;i++) product.add(product_array[i]); x.add(IloBoolVar(env,"x12")); //0 x.add(IloBoolVar(env,"x24")); //1 x.add(IloBoolVar(env,"x46")); //2 x.add(IloBoolVar(env,"x13")); //3 x.add(IloBoolVar(env,"x32")); //4 x.add(IloBoolVar(env,"x35")); //5 x.add(IloBoolVar(env,"x56")); //6 x.add(IloBoolVar(env,"x25")); //7 x.add(IloBoolVar(env,"x34")); //8 x.add(IloBoolVar(env,"x45")); //9 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"s2")); //10 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"s3")); //11 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"s4")); //12 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"s5")); //13 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"s1")); //14 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"s6")); //15 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"q2")); //16 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"q3")); //17 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"q4")); //18 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"q5")); //19 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"q1")); //20 x.add(IloNumVar(env,0,IloInfinity,ILOINT,"q6")); //21 model.add(IloMinimize(env, costs[0]*x[0] + costs[1]*x[1] + costs[2]*x[2] + costs[3]*x[3] + costs[4]*x[4] + costs[5]*x[5] + costs[6]*x[6] + costs[7]*x[7] + costs[8]*x[8] + costs[9]*x[9])); c.add(x[0]+ x[3] == 1); // arcs sortant du noeud de depart c.add(x[2]+ x[6] == 1); // arcs entrant au noeud d arrivee c.add(x[1]+ x[7] - x[0] - x[4] == 0); c.add(x[8]+ x[5] + x[4] - x[3] == 0); c.add(x[9]+ x[2] - x[1] - x[8] == 0); c.add(x[6]- x[7] - x[5] - x[9] == 0); c.add(time[0]*x[0] + time[1]*x[1] + time[2]*x[2] + time[3]*x[3] + time[4]*x[4] + time[5]*x[5] + time[6]*x[6] + time[7]*x[7] + time[8]*x[8] + time[9]*x[9] <= 14); //c.add(product[0]*x[0] + product[1]*x[1] + product[2]*x[2] + product[3]*x[3] + product[4]*x[4] + product[5]*x[5] + product[6]*x[6] + product[7]*x[7] + product[8]*x[8] + product[9]*x[9] <= 4); c.add(x[14]+time[0]-1000*(1-x[0]) - x[10]<= 0); c.add(x[20]+product[0]-1000*(1-x[0]) - x[16]<= 0); c.add(x[10]+time[1]-1000*(1-x[1]) - x[12]<= 0); c.add(x[16]+product[1]-1000*(1-x[1]) - x[18]<= 0); c.add(x[18]-product[1]-1000*(1-x[1]) - x[16]<= 0); c.add(x[12]+time[2]-1000*(1-x[2]) - x[15]<= 0); c.add(x[18]+product[2]-1000*(1-x[2]) - x[21]<= 0); c.add(x[21]-product[2]-1000*(1-x[2]) - x[18]<= 0); c.add(x[14]+time[3]-1000*(1-x[3]) - x[11]<= 0); c.add(x[20]+product[3]-1000*(1-x[3]) - x[17]<= 0); c.add(x[17]-product[3]-1000*(1-x[3]) - x[20]<= 0); c.add(x[13]+time[6]-1000*(1-x[6]) - x[15]<= 0); c.add(x[19]+product[6]-1000*(1-x[6]) - x[21]<= 0); c.add(x[10]+time[7]-1000*(1-x[7]) - x[13]<= 0); c.add(x[16]+product[7]-1000*(1-x[7]) - x[19]<= 0); c.add(x[12]+time[9]-1000*(1-x[9]) - x[13]<= 0); c.add(x[18]+product[9]-1000*(1-x[9]) - x[19]<= 0); c.add(x[11]+time[4]-1000*(1-x[4]) - x[10] <=0); c.add(x[17]+product[4]-1000*(1-x[4]) - x[16]<= 0); c.add(x[16]-product[4]-1000*(1-x[4]) - x[17]<= 0); c.add(x[11]+time[8]-1000*(1-x[8]) - x[12]<= 0); c.add(x[17]+product[8]-1000*(1-x[8]) - x[18]<= 0); c.add(x[11]+time[5]-1000*(1-x[5]) - x[13]<= 0); c.add(x[17]+product[5]-1000*(1-x[5]) - x[19]<= 0); c.add(5 <= x[10] <= 7); c.add(2 <= x[11] <= 5); c.add(5 <= x[12] <= 9); c.add(0 <= x[13] <= 20); c.add(0 <= x[14] <= 0); c.add(0 <= x[15] <= 14); /* c.add(2 <= x[17] <= 4); c.add(0 <= x[16] <= 2); c.add(3 <= x[18] <= 4); c.add(0 <= x[19] <= 1000); //c.add(0 <= x[20] <= 0);*/ c.add(3 <= x[21] <= 4); c.add( x[20] == 1); model.add(c); }