Пример #1
0
void testSkinRecognition(const BayesianClassifier &classifier, ImageType &image, ImageType &ref, std::string out, bool YCbCr){

    int height, width, levels;
    image.getImageInfo(height,width,levels);
    ImageType outImg(height,width,levels);

    RGB val1, val2;
    int label;
    std::vector<double> color(2);
    int TP = 0, TN = 0, FN = 0, FP = 0;
    RGB white(255,255,255);
    RGB black(0,0,0);

    for(int row = 0; row < height; row++){
      for(int col = 0; col < width; col++){
        image.getPixelVal(row, col, val1);
        ref.getPixelVal(row, col, val2);

        if(YCbCr == true){
          color[0] = -0.169*val1.r - 0.332*val1.g+ 0.500*val1.b;
          color[1] = 0.500*val1.r - 0.419*val1.g - 0.081*val1.b;
        }
        else{
          color[0] = val1.r/float(val1.r+val1.g+val1.b);
          color[1] = val1.g/float(val1.r+val1.g+val1.b);
        }

        label = classifier.predict(color);

        if(label == 0){
          outImg.setPixelVal(row, col, white);
          if(val2 != black){ TP++; } else{ FP++; }
        }
        else{
          outImg.setPixelVal(row, col, black);
          if(val2 == black){ TN++; } else{ FN++; }
        }
      }
    }  // end outer for loop

    std::cout << std::endl
              << "TP: " << TP << std::endl
              << "TN: " << TN << std::endl
              << "FP: " << FP << std::endl
              << "FN: " << FN << std::endl;

    /*std::stringstream ss;
    ss << FP << " " << FN;
    Debugger debugger("Data_Prog2/errors3a.txt",true);
    debugger.debug(ss.str());
    */

    writeImage(out.c_str(), outImg);
}
Пример #2
0
void getMLEParameters(ImageType& trainingImage, ImageType& refImage, bool useRGB, Vector2f &estSkinMu, Matrix2f &estSkinSigma, Vector2f &estNonSkinMu, Matrix2f &estNonSkinSigma)
{
	vector<Vector2f> sampleSkinData, sampleNonSkinData;

	RGB val;

 	float total, x1, x2;
 	total = x1 = x2 = 0;

	for(int i=0; i<N; i++)
	{
		for(int j=0; j<M; j++) 
		{
			trainingImage.getPixelVal(i, j, val);
			if(useRGB)
			{
				total = val.r + val.g + val.b;
				if(total == 0)
				{
					x1 = x2 = 0;
				}
				else
				{
					x1 = (float)val.r / total;	//New Red value
					x2 = (float)val.g / total;  //New Green Value	
				}
			}
			else
			{
				x1 = -0.169 * (float)val.r - 0.332 * (float)val.g + 0.5 * (float)val.b; //New Cb value
				x2 = 0.5 * (float)val.r - 0.419 * (float)val.g - 0.081 * (float)val.b;  //New Cr value
			}
			refImage.getPixelVal(i, j, val);
			if(val.r != 0 && val.g != 0 && val.b != 0)
			{
				sampleSkinData.push_back(Vector2f(x1, x2));
			}
			else
			{
				// cout << x1 << "\t" << x2 << endl;
				sampleNonSkinData.push_back(Vector2f(x1, x2));
			}
		}
	}


	estNonSkinMu = MLE::calculateSampleMean(sampleNonSkinData);
	estNonSkinSigma = MLE::calculateSampleCovariance(sampleNonSkinData, estNonSkinMu);
	estSkinMu = MLE::calculateSampleMean(sampleSkinData);
	estSkinSigma = MLE::calculateSampleCovariance(sampleSkinData, estSkinMu);
	
}
Пример #3
0
void testSkinRecogWithThreshold(const std::vector<double> &mean, const Matrix &cov, ImageType &image, std::string out){

    RGB white(255,255,255);
    RGB black(0,0,0);

    int height, width, levels;
    image.getImageInfo(height,width,levels);

    RGB val;
    std::vector<double> pc(2); // pure color

    double thR, thG;
    for(int row = 0; row < height; row++){
     for(int col = 0; col < width; col++){
       image.getPixelVal(row, col, val);

       pc[0] = val.r/float(val.r+val.g+val.b);
       pc[1] = val.g/float(val.r+val.g+val.b);

       thR = exp(-(cov[0][0] * pow((pc[0] - mean[0]),2) +  cov[0][1] * (pc[0]- mean[0])));
       thG = exp(-(cov[1][0] * (pc[1] - mean[1]) + cov[1][1] * pow((pc[1] - mean[1]),2)));

       if((thR >= .9 && thG >= 1.0 && thG < 1.2)
         || (thR <= .8 && thR >= .7 && thG > 1.1)){
         image.setPixelVal(row, col, white);
       }
       else{
         image.setPixelVal(row, col, black);
       }
      }
     } // end outer for loop

    writeImage(out.c_str(), image);
}
Пример #4
0
/*
Expand image function
Writen by: Jeremiah Berns
Dependincies, image.cpp, image.h
Discription: Will accept the shrunken image, the grow size of the image, and then
	     expand the image back to 256x256
*/
void expandImage(ImageType oldImage, ImageType& newImage, int growVal, string newImageName)
{
  //Variable decliration
    int rows, cols, Q, tempValue;
	

  //Variable setting
    oldImage.getImageInfo(rows, cols, Q);

    for(int i=0;i<rows;i++)
      {
	for(int j=0;j<cols;j++)
	  {
	  oldImage.getPixelVal(i,j, tempValue);
	  for(int k=0;k<growVal;k++)
	    {
	      for(int l=0;l<growVal;l++)
	        {
		newImage.setPixelVal(i*growVal+k,j*growVal+l,tempValue);
		}
	    }
	  }
      }

  writeImage(newImageName, newImage);
}
Пример #5
0
/*
Histogram Equalization function
Written by: Jeremiah Berns
Dependincies:image.h, image.cpp
Discription:  This function will perform the histogram equalization algorithem to the oldImage
             and will output the newImage with the given newImageName.  
*/
void histogramEq(ImageType oldImage, ImageType& newImage, string newImageName)
{
  int rows, cols, Q, pixelValue, pixelCount;
  oldImage.getImageInfo(rows,cols,Q);
  pixelCount = rows*cols;
  int adjustedHistogram[Q];
  double histogramArray[Q], equalizedHistogram[Q];
  double probabilityArray[Q], cumulativeProbability[Q], probTotal=0;
 

  for (int i = 0; i<Q;i++)
    {
    histogramArray[i] = 0;
    equalizedHistogram[i] = 0;

    }

  for(int i=0; i<rows;i++)
    {
      for(int j=0; j<cols;j++)
        {
	  oldImage.getPixelVal(i,j,pixelValue);
  	  histogramArray[pixelValue]+=1;
	}
    }

  for(int i=0;i<Q;i++)
    {
     probTotal+= histogramArray[i]/pixelCount;
    
     cumulativeProbability[i] = probTotal;
     cumulativeProbability[i] = cumulativeProbability[i]*255;
     adjustedHistogram[i] = cumulativeProbability[i];
     cout<<adjustedHistogram[i]<<endl;
    }

  for(int i=0; i<rows;i++)
    {
      for(int j=0; j<cols;j++)
        {
	  oldImage.getPixelVal(i,j,pixelValue);
  	  newImage.setPixelVal(i,j,adjustedHistogram[pixelValue-1]);
	}
    }

  writeImage(newImageName, newImage);
}
Пример #6
0
void makeColorMatrices(ImageType& img, ImageType& ref, Matrix &sk_cols,
  Matrix &nsk_cols, bool YCbCr)
{
  int height1, width1, levels1;
  int height2, width2, levels2;
  img.getImageInfo(height1, width1, levels1);
  ref.getImageInfo(height2, width2, levels2);

  assert(height1 == height2);
  assert(width1 == width2);
  assert(levels1 == levels2);

  RGB val1, val2;
  std::vector<double> color(2);
  RGB black(0,0,0);

  for(int row = 0; row < height1; row++){
    for(int col = 0; col < width1; col++){
      img.getPixelVal(row, col, val1);
      ref.getPixelVal(row, col, val2);

      if(YCbCr == true){
        color[0] = -0.169*val1.r - 0.332*val1.g+ 0.500*val1.b;
        color[1] = 0.500*val1.r - 0.419*val1.g - 0.081*val1.b;
      }
      else{
        color[0] = val1.r/float(val1.r+val1.g+val1.b);
        color[1] = val1.g/float(val1.r+val1.g+val1.b);
      }

      if(val2 != black){
        sk_cols.push_back(color);
      }
      else{
        nsk_cols.push_back(color);
      }
    }
  }
}
Пример #7
0
void writeImage(const char fname[], ImageType& image)
/* write PPM image */
{
    int i, j;
    int N, M, Q;
    unsigned char *charImage;
    ofstream ofp;

    image.getImageInfo(N, M, Q);

    // make space for PPM
    charImage = (unsigned char *) new unsigned char [3*M*N];

    // convert the RGB  to unsigned char
    RGB val;
    for(i=0; i<N; i++) {
        for(j=0; j<3*M; j+=3) {
            image.getPixelVal(i, j/3, val);
            charImage[i*3*M+j]=(unsigned char)val.r;
            charImage[i*3*M+j+1]=(unsigned char)val.g;
            charImage[i*3*M+j+2]=(unsigned char)val.b;
        }
    }

    ofp.open(fname, ios::out | ios::binary);

    if (!ofp) {
        cout << "Can't open file: " << fname << endl;
        exit(1);
    }

    ofp << "P6" << endl;
    ofp << M << " " << N << endl;
    ofp << Q << endl;

    ofp.write( reinterpret_cast<char *>(charImage), (3*M*N)*sizeof(unsigned char));

    if (ofp.fail()) {
        cout << "Can't write image " << fname << endl;
        exit(0);
    }

    ofp.close();

    delete [] charImage;

}
Пример #8
0
void writeImage(string fname, ImageType& image){
	int i, j;
	int N, M, Q;
	unsigned char *charImage;
	ofstream ofp;

	image.getImageInfo(N, M, Q);

	charImage = (unsigned char *) new unsigned char [M*N];

	// convert the integer values to unsigned char

	int val;

	for(i=0; i<N; i++){
		for(j=0; j<M; j++){
			image.getPixelVal(i, j, val);
			charImage[i*M+j]=(unsigned char)val;
		}
	}

	ofp.open(fname.c_str(), ios::out | ios::binary);

	if (!ofp) {
		cout << "Can't open file: " << fname << endl;
		exit(1);
	}

	ofp << "P5" << endl;
	ofp << M << " " << N << endl;
	ofp << Q << endl;

	ofp.write( reinterpret_cast<char *>(charImage), (M*N)*sizeof(unsigned char));

	if (ofp.fail()) {
		cout << "Can't write image " << fname << endl;
		exit(0);
	}

	ofp.close();
}
Пример #9
0
/*
shrink Image funtion.
Writen By Jeremiah Berns.
Dependincies: image.h, image.cpp
Discription: Will take in the old image, and the new image, and the pixel value
	    based apon the shrink value passed to it.  It will place that value
	    from the old image into the new image, then save the new image with
   	    the passed in file name. 
*/
void shrinkImage(ImageType oldImage, ImageType& newImage, int shrinkVal, string newImageFname)
{
	//Variable decliration
	int rows, col, Q, tempValue;
	

	//Variable setting
	oldImage.getImageInfo(rows, col, Q);

	for(int i=0; i<rows;i++)
	  {
	    for(int j=0;j<col;j++)
	      {
		if(i%shrinkVal == 0 && j%shrinkVal ==0)
		  {
		    oldImage.getPixelVal(i,j, tempValue);
		    newImage.setPixelVal(i/shrinkVal,j/shrinkVal,tempValue);
		  }
	      }
	    
	  }

	writeImage(newImageFname, newImage);
}
Пример #10
0
void runTwoClassTest(ImageType& testImage, ImageType& refImage, bool useRGB, Vector2f &estSkinMu, Matrix2f &estSkinSigma, Vector2f &estNonSkinMu, Matrix2f &estNonSkinSigma, const char fileOutput[])
{
	float falseNegative, falsePositive;
	float n, p, fn, fp, x1, x2, total;
	RGB val;
	ImageType writeNewImage(N, M, Q);
	falseNegative = falsePositive = n = p = fn = fp = x1 = x2 = total = 0;

	for(int i=0; i<N; i++)
	{
		for(int j=0; j<M; j++) 
		{
			testImage.getPixelVal(i, j, val);
			if(useRGB)
			{
				total = val.r + val.g + val.b;
				x1 = (float)val.r / total;	//New Red value
				x2 = (float)val.g / total;  //New Green Value
			}
			else
			{
				x1 = -0.169 * (float)val.r - 0.332 * (float)val.g + 0.5 * (float)val.b; //New Cb value
				x2 = 0.5 * (float)val.r - 0.419 * (float)val.g - 0.081 * (float)val.b;  //New Cr value
			}

			bool classifiedAsSkin = BayesClassifier::classifierCaseThree(Vector2f(x1, x2), estSkinMu, estNonSkinMu, estSkinSigma, estNonSkinSigma) == 1;
			if(classifiedAsSkin)
			{
				writeNewImage.setPixelVal(i, j, RGB(0, 0, 0));
			}
			else
			{
				writeNewImage.setPixelVal(i, j, RGB(255, 255, 255));
			}
			refImage.getPixelVal(i, j, val);

			bool isSkin = (val.r != 0 && val.g != 0 && val.b != 0);

			if(classifiedAsSkin)
			{
				p++;
			}
			else
			{
				n++;
			}
				
			if(!classifiedAsSkin && isSkin)
			{
				fn++;
			}
			else if(classifiedAsSkin && !isSkin)
			{
				fp++;
			}
		}
	}

	writeImage("write.ppm", writeNewImage);
	
	falseNegative = fn / n;
	falsePositive = fp / p;
	
	ofstream generalOutput;

	generalOutput.open(fileOutput);

	generalOutput << "Two-Class (Skin vs Non-Skin) Results:" << endl;

	generalOutput << "False Negative: " << fn << " / " << n << " = " << falseNegative << endl;
	generalOutput << "False Positive: " << fp << " / " << p << " = " << falsePositive << endl;

	generalOutput.close();
}
Пример #11
0
void runThresholdTest(ImageType& testImage, ImageType& refImage, bool useRGB, float thresMin, float thresMax, Vector2f &estMu, Matrix2f &estSigma, const char fileOutput[])
{
	vector<float> falseNegative, falsePositive;
	float n, p, fn, fp, x1, x2, total;
	RGB val;

	for(float threshold = thresMin; threshold <= thresMax+0.02; threshold+=.05)
	{
		n = p = fn = fp = 0;
		for(int i=0; i<N; i++)
		{
			for(int j=0; j<M; j++) 
			{
				testImage.getPixelVal(i, j, val);

				if(useRGB)
				{
					total = val.r + val.g + val.b;
					x1 = (float)val.r / total;	//New Red value
					x2 = (float)val.g / total;  //New Green Value
				}
				else
				{
					x1 = -0.169 * (float)val.r - 0.332 * (float)val.g + 0.5 * (float)val.b; //New Cb value
					x2 = 0.5 * (float)val.r - 0.419 * (float)val.g - 0.081 * (float)val.b;  //New Cr value
				}

				bool classifiedAsSkin = BayesClassifier::thresholdCaseThree(Vector2f(x1, x2), estMu, estSigma, threshold);
				 
				refImage.getPixelVal(i, j, val);

				bool isSkin = (val.r != 0 && val.g != 0 && val.b != 0);

				if(classifiedAsSkin)
					p++;
				else
					n++;
				
				if(isSkin && !classifiedAsSkin)
				{
					fn++;
				}
				else if(!isSkin && classifiedAsSkin)
				{
					fp++;
				}
			}
		}

		// cout << "Threshold: " << threshold << ": " << endl;
		// cout << "\tFalse Negative Rate: \t" << fn / n << endl;
		// cout << "\tFalse Positive Rate: \t" << fp / p << endl << endl;

		falseNegative.push_back(fn / n);
		falsePositive.push_back(fp / p);
	}
	
	ofstream generalOutput;

	generalOutput.open(fileOutput);

	generalOutput << "Threshold\tFalseNegative\tFalsePositive" << endl;

	for(float threshold = thresMin, i = 0; threshold <= thresMax+0.02; threshold+=.05, i++)
	{
		generalOutput << threshold << "\t" << falseNegative[i] << "\t" << falsePositive[i] << endl;
	}

	generalOutput.close();
}