Пример #1
0
/**
 * Given a ray, find the first place it intersects the scene geometry.
 * @param  ray [description]
 * @return
 */
Intersection getClosestIntersection(Ray ray, bool isShadowRay) {
  Intersection closestInters = Intersection();
  for(std::vector<Object>::iterator obj = scene.objects.begin(); obj != scene.objects.end(); ++obj) {
    Intersection inters = obj->bvh.intersect(ray, 0.0f, 800.0f);
    // for(std::vector<Triangle>::iterator tris = obj->triangles.begin(); tris != obj->triangles.end(); ++tris) {
    //   Intersection inters = tris->intersect(ray);
      if( inters.didHit() ) {
        if( inters.distanceTraveled < closestInters.distanceTraveled || !closestInters.didHit() ) {
          closestInters = inters;
          closestInters.object = &*obj;
        }
      }
    // }
    for(std::vector<Circle>::iterator circ = obj->circles.begin(); circ != obj->circles.end(); ++circ) {
      Intersection inters = circ->intersect(ray);
      if( inters.didHit() ) {
        if( inters.distanceTraveled < closestInters.distanceTraveled || !closestInters.didHit() ) {

          closestInters = inters;
          closestInters.object = &*obj;
        }
      }
    }

  }
  return closestInters;
}
Пример #2
0
/**
 * Trace a ray and return the color of the given ray.
 * @param  ray [description]
 * @return
 */
glm::vec3 trace(Ray ray, float distanceTraveled, int maxDepth) {
  glm::vec3 color = glm::vec3(0.0f);
  Intersection inters = getClosestIntersection(ray, false);
  if(inters.didHit()) { //if we hit something figure out the color.

    color += inters.object->material.aColor; // Ambient lighting.

    if(inters.object->material.opacity < 1.0f  && maxDepth > 0) { // Transmitted light
      float rRatio;
      float cosTheta = glm::dot(inters.incident.direction, inters.normal);
      if(inters.inside) {
        rRatio = inters.object->material.refractiveIndex;
        cosTheta *= -1.0f;
      }
      else {
        rRatio = 1.0f/inters.object->material.refractiveIndex;
      }

      float antiCos = sqrtf(1.0f - (1.0f-cosTheta*cosTheta)*rRatio*rRatio);
      // printf("refraction with ratio: %f, cos: %f, antiCos: %f\n", rRatio, cosTheta, antiCos);
      glm::vec3 refractedDir = rRatio*inters.incident.direction + (cosTheta*rRatio + antiCos)*inters.normal;
      color += trace(Ray(inters.point, refractedDir), inters.distanceTraveled+distanceTraveled, maxDepth-1)*(1.0f-inters.object->material.opacity);
    }

    if(inters.object->material.reflectivity > 0.0f && maxDepth > 0) { // Reflected light
      glm::vec3 projOntoNorm = -glm::dot(inters.incident.direction, inters.normal)*inters.normal;
      glm::vec3 reflectDir = inters.incident.direction + projOntoNorm*2.0f;
      color += trace(Ray(inters.point, reflectDir), inters.distanceTraveled+distanceTraveled, maxDepth-1)*inters.object->material.rColor*inters.object->material.reflectivity;
    }

    if(!inters.inside) { // GLORIOUS IMPROVEMENTS, Diffuse light
      for(std::vector<Light>::iterator lightIter = scene.lights.begin(); lightIter != scene.lights.end(); ++lightIter) {
        glm::vec3 lightDir = lightIter->location - inters.point;
        float distanceToLight = glm::length(lightDir);
        lightDir = glm::normalize(lightDir);

        Ray shadowRay = Ray(inters.point, lightDir);
        Intersection shadowIntersection = getClosestIntersection(shadowRay, true);

        if((!shadowIntersection.didHit() || distanceToLight < shadowIntersection.distanceTraveled )) {// We hit something behind the light
          float totalDistanceTraveled = distanceToLight + inters.distanceTraveled + distanceTraveled; // Distance from light to intersection + inters to eye + recursion(reflected/refracted)

          float difIntensity = glm::dot(lightDir, inters.normal)*lightIter->power;

          glm::vec3 halfAngle = glm::normalize(lightDir - inters.incident.direction); // incident is in the direction from eye, so negate
          float NdotH = std::max(0.0f, glm::dot(inters.normal, halfAngle));
          float specIntensity = powf(NdotH, inters.object->material.specHardness)*lightIter->power; // Spectral hardness of the material

          color += (lightIter->color * inters.object->material.sColor)*specIntensity/powf(totalDistanceTraveled, 2);
          color += (lightIter->color * inters.object->material.dColor)*difIntensity/powf(totalDistanceTraveled, 2);
        }
      }
    }

  }
  return color;
}