bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) { bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i); // FIXME: pass in cached bounds from caller _Rect c1Bounds, c2Bounds; c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? c2Bounds.setBounds(c2); result |= intersectEnd(c1, false, c2, c2Bounds, i); result |= intersectEnd(c1, true, c2, c2Bounds, i); bool selfIntersect = c1 == c2; if (!selfIntersect) { i.swap(); result |= intersectEnd(c2, false, c1, c1Bounds, i); result |= intersectEnd(c2, true, c1, c1Bounds, i); i.swap(); } // If an end point and a second point very close to the end is returned, the second // point may have been detected because the approximate quads // intersected at the end and close to it. Verify that the second point is valid. if (i.used() <= 1 || i.coincidentUsed()) { return result; } _Point pt[2]; if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1]) && pt[0].approximatelyEqual(pt[1])) { i.removeOne(1); } if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1]) && pt[0].approximatelyEqual(pt[1])) { i.removeOne(i.used() - 2); } return result; }
int intersect(const Cubic& c, Intersections& i) { // check to see if x or y end points are the extrema. Are other quick rejects possible? if (ends_are_extrema_in_x_or_y(c)) { return false; } (void) intersect3(c, c, i); if (i.used() > 0) { SkASSERT(i.used() == 1); if (i.fT[0][0] > i.fT[1][0]) { SkTSwap(i.fT[0][0], i.fT[1][0]); } } return i.used(); }
bool intersect(double minT1, double maxT1, double minT2, double maxT2) { Cubic sub1, sub2; // FIXME: carry last subdivide and reduceOrder result with cubic sub_divide(cubic1, minT1, maxT1, sub1); sub_divide(cubic2, minT2, maxT2, sub2); Intersections i; intersect2(sub1, sub2, i); if (i.used() == 0) { return false; } double x1, y1, x2, y2; t1 = minT1 + i.fT[0][0] * (maxT1 - minT1); t2 = minT2 + i.fT[1][0] * (maxT2 - minT2); xy_at_t(cubic1, t1, x1, y1); xy_at_t(cubic2, t2, x2, y2); if (AlmostEqualUlps(x1, x2) && AlmostEqualUlps(y1, y2)) { return true; } double half1 = (minT1 + maxT1) / 2; double half2 = (minT2 + maxT2) / 2; ++depth; bool result; if (depth & 1) { result = intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2) || intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2); } else { result = intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2) || intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2); } --depth; return result; }
static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) { int last = i.used() - 1; if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { return false; } pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2); return true; }
int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) { SkTDArray<double> ts; double precision = calcPrecision(cubic); cubic_to_quadratics(cubic, precision, ts); double tStart = 0; Cubic part; int tsCount = ts.count(); for (int idx = 0; idx <= tsCount; ++idx) { double t = idx < tsCount ? ts[idx] : 1; Quadratic q1; sub_divide(cubic, tStart, t, part); demote_cubic_to_quad(part, q1); Intersections locals; intersect2(q1, quad, locals); for (int tIdx = 0; tIdx < locals.used(); ++tIdx) { double globalT = tStart + (t - tStart) * locals.fT[0][tIdx]; i.insertOne(globalT, 0); globalT = locals.fT[1][tIdx]; i.insertOne(globalT, 1); } tStart = t; } return i.used(); }
void CubicIntersection_Test() { for (size_t index = firstCubicIntersectionTest; index < tests_count; ++index) { const Cubic& cubic1 = tests[index][0]; const Cubic& cubic2 = tests[index][1]; Cubic reduce1, reduce2; int order1 = reduceOrder(cubic1, reduce1, kReduceOrder_NoQuadraticsAllowed); int order2 = reduceOrder(cubic2, reduce2, kReduceOrder_NoQuadraticsAllowed); if (order1 < 4) { printf("%s [%d] cubic1 order=%d\n", __FUNCTION__, (int) index, order1); continue; } if (order2 < 4) { printf("%s [%d] cubic2 order=%d\n", __FUNCTION__, (int) index, order2); continue; } if (implicit_matches(reduce1, reduce2)) { printf("%s [%d] coincident\n", __FUNCTION__, (int) index); continue; } Intersections tIntersections; intersect(reduce1, reduce2, tIntersections); if (!tIntersections.intersected()) { printf("%s [%d] no intersection\n", __FUNCTION__, (int) index); continue; } for (int pt = 0; pt < tIntersections.used(); ++pt) { double tt1 = tIntersections.fT[0][pt]; double tx1, ty1; xy_at_t(cubic1, tt1, tx1, ty1); double tt2 = tIntersections.fT[1][pt]; double tx2, ty2; xy_at_t(cubic2, tt2, tx2, ty2); if (!AlmostEqualUlps(tx1, tx2)) { printf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } if (!AlmostEqualUlps(ty1, ty2)) { printf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } } } }
bool intersect(const Cubic& cubic, Intersections& i) { SkTDArray<double> ts; double precision = calcPrecision(cubic); cubic_to_quadratics(cubic, precision, ts); int tsCount = ts.count(); if (tsCount == 1) { return false; } double t1Start = 0; Cubic part; for (int idx = 0; idx < tsCount; ++idx) { double t1 = ts[idx]; Quadratic q1; sub_divide(cubic, t1Start, t1, part); demote_cubic_to_quad(part, q1); double t2Start = t1; for (int i2 = idx + 1; i2 <= tsCount; ++i2) { const double t2 = i2 < tsCount ? ts[i2] : 1; Quadratic q2; sub_divide(cubic, t2Start, t2, part); demote_cubic_to_quad(part, q2); Intersections locals; intersect2(q1, q2, locals); for (int tIdx = 0; tIdx < locals.used(); ++tIdx) { // discard intersections at cusp? (maximum curvature) double t1sect = locals.fT[0][tIdx]; double t2sect = locals.fT[1][tIdx]; if (idx + 1 == i2 && t1sect == 1 && t2sect == 0) { continue; } double to1 = t1Start + (t1 - t1Start) * t1sect; double to2 = t2Start + (t2 - t2Start) * t2sect; i.insert(to1, to2); } t2Start = t2; } t1Start = t1; } return i.intersected(); }
static void standardTestCases() { for (size_t index = firstQuadIntersectionTest; index < quadraticTests_count; ++index) { const Quadratic& quad1 = quadraticTests[index][0]; const Quadratic& quad2 = quadraticTests[index][1]; Quadratic reduce1, reduce2; int order1 = reduceOrder(quad1, reduce1, kReduceOrder_TreatAsFill); int order2 = reduceOrder(quad2, reduce2, kReduceOrder_TreatAsFill); if (order1 < 3) { printf("[%d] quad1 order=%d\n", (int) index, order1); } if (order2 < 3) { printf("[%d] quad2 order=%d\n", (int) index, order2); } if (order1 == 3 && order2 == 3) { Intersections intersections; intersect2(reduce1, reduce2, intersections); if (intersections.intersected()) { for (int pt = 0; pt < intersections.used(); ++pt) { double tt1 = intersections.fT[0][pt]; double tx1, ty1; xy_at_t(quad1, tt1, tx1, ty1); double tt2 = intersections.fT[1][pt]; double tx2, ty2; xy_at_t(quad2, tt2, tx2, ty2); if (!approximately_equal(tx1, tx2)) { printf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } if (!approximately_equal(ty1, ty2)) { printf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } } } } } }
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently // chase intersections near quadratic ends, requiring odd hacks to find them. static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2, double t2s, double t2e, double precisionScale, Intersections& i) { i.upDepth(); bool result = false; Cubic c1, c2; sub_divide(cubic1, t1s, t1e, c1); sub_divide(cubic2, t2s, t2e, c2); SkTDArray<double> ts1; // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1); SkTDArray<double> ts2; cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; Quadratic s1; int o1 = quadPart(cubic1, t1Start, t1, s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; if (cubic1 == cubic2 && t1Start >= t2Start) { t2Start = t2; continue; } Quadratic s2; int o2 = quadPart(cubic2, t2Start, t2, s2); #if ONE_OFF_DEBUG char tab[] = " "; if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { Cubic cSub1, cSub2; sub_divide(cubic1, t1Start, t1, cSub1); sub_divide(cubic2, t2Start, t2, cSub2); SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__, t1Start, t1, t2Start, t2); Intersections xlocals; intersectWithOrder(s1, o1, s2, o2, xlocals); SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); } #endif Intersections locals; intersectWithOrder(s1, o1, s2, o2, locals); double coStart[2] = { -1 }; _Point coPoint; int tCount = locals.used(); for (int tIdx = 0; tIdx < tCount; ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx]; // if the computed t is not sufficiently precise, iterate _Point p1 = xy_at_t(cubic1, to1); _Point p2 = xy_at_t(cubic2, to2); if (p1.approximatelyEqual(p2)) { if (locals.fIsCoincident[0] & 1 << tIdx) { if (coStart[0] < 0) { coStart[0] = to1; coStart[1] = to2; coPoint = p1; } else { i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1); coStart[0] = -1; } result = true; } else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(to2, to1, p1); } else { i.insert(to1, to2, p1); } result = true; } } else { double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine #if 1 double c1Bottom = tIdx == 0 ? 0 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2; double c1Min = SkTMax(c1Bottom, to1 - offset); double c1Top = tIdx == tCount - 1 ? 1 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2; double c1Max = SkTMin(c1Top, to1 + offset); double c2Min = SkTMax(0., to2 - offset); double c2Max = SkTMin(1., to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i.fT[0][i.used() - 1] : -1); #endif if (tCount > 1) { c1Min = SkTMax(0., to1 - offset); c1Max = SkTMin(1., to1 + offset); double c2Bottom = tIdx == 0 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2; double c2Top = tIdx == tCount - 1 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2; if (c2Bottom > c2Top) { SkTSwap(c2Bottom, c2Top); } if (c2Bottom == to2) { c2Bottom = 0; } if (c2Top == to2) { c2Top = 1; } c2Min = SkTMax(c2Bottom, to2 - offset); c2Max = SkTMin(c2Top, to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i.fT[0][i.used() - 1] : -1); #endif c1Min = SkTMax(c1Bottom, to1 - offset); c1Max = SkTMin(c1Top, to1 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i.fT[0][i.used() - 1] : -1); #endif } #else double c1Bottom = tIdx == 0 ? 0 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2; double c1Min = SkTMax(c1Bottom, to1 - offset); double c1Top = tIdx == tCount - 1 ? 1 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2; double c1Max = SkTMin(c1Top, to1 + offset); double c2Bottom = tIdx == 0 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2; double c2Top = tIdx == tCount - 1 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2; if (c2Bottom > c2Top) { SkTSwap(c2Bottom, c2Top); } if (c2Bottom == to2) { c2Bottom = 0; } if (c2Top == to2) { c2Top = 1; } double c2Min = SkTMax(c2Bottom, to2 - offset); double c2Max = SkTMin(c2Top, to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__, c1Min <= 0.210357794 && 0.210357794 <= c1Max && c2Min <= 0.223476406 && 0.223476406 <= c2Max, to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset, c1Min <= 0.211324707 && 0.211324707 <= c1Max && c2Min <= 0.211327209 && 0.211327209 <= c2Max, to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset); SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); // TODO: if no intersection is found, either quadratics intersected where // cubics did not, or the intersection was missed. In the former case, expect // the quadratics to be nearly parallel at the point of intersection, and check // for that. } } SkASSERT(coStart[0] == -1); t2Start = t2; } t1Start = t1; } i.downDepth(); return result; }
// Up promote the quad to a cubic. // OPTIMIZATION If this is a common use case, optimize by duplicating // the intersect 3 loop to avoid the promotion / demotion code int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) { Cubic up; toCubic(quad, up); (void) intersect3(cubic, up, i); return i.used(); }
// intersect the end of the cubic with the other. Try lines from the end to control and opposite // end to determine range of t on opposite cubic. static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2, Intersections& i) { // bool selfIntersect = cubic1 == cubic2; _Line line; int t1Index = start ? 0 : 3; line[0] = cubic1[t1Index]; // don't bother if the two cubics are connnected #if 0 if (!selfIntersect && (line[0].approximatelyEqual(cubic2[0]) || line[0].approximatelyEqual(cubic2[3]))) { return false; } #endif bool result = false; SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array for (int index = 0; index < 4; ++index) { if (index == t1Index) { continue; } _Vector dxy1 = cubic1[index] - line[0]; dxy1 /= gPrecisionUnit; line[1] = line[0] + dxy1; _Rect lineBounds; lineBounds.setBounds(line); if (!bounds2.intersects(lineBounds)) { continue; } Intersections local; if (!intersect(cubic2, line, local)) { continue; } for (int idx2 = 0; idx2 < local.used(); ++idx2) { double foundT = local.fT[0][idx2]; if (approximately_less_than_zero(foundT) || approximately_greater_than_one(foundT)) { continue; } if (local.fPt[idx2].approximatelyEqual(line[0])) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(foundT, start ? 0 : 1, line[0]); } else { i.insert(start ? 0 : 1, foundT, line[0]); } result = true; } else { *tVals.append() = local.fT[0][idx2]; } } } if (tVals.count() == 0) { return result; } QSort<double>(tVals.begin(), tVals.end() - 1); double tMin1 = start ? 0 : 1 - LINE_FRACTION; double tMax1 = start ? LINE_FRACTION : 1; int tIdx = 0; do { int tLast = tIdx; while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { ++tLast; } double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); int lastUsed = i.used(); result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); if (lastUsed == i.used()) { tMin2 = SkTMax(tVals[tIdx] - (1.0 / gPrecisionUnit), 0.0); tMax2 = SkTMin(tVals[tLast] + (1.0 / gPrecisionUnit), 1.0); result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); } tIdx = tLast + 1; } while (tIdx < tVals.count()); return result; }
// this flavor approximates the cubics with quads to find the intersecting ts // OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used // to create the approximations, could be stored in the cubic segment // FIXME: this strategy needs to intersect the convex hull on either end with the opposite to // account for inset quadratics that cause the endpoint intersection to avoid detection // the segments can be very short -- the length of the maximum quadratic error (precision) // FIXME: this needs to recurse on itself, taking a range of T values and computing the new // t range ala is linear inner. The range can be figured by taking the dx/dy and determining // the fraction that matches the precision. That fraction is the change in t for the smaller cubic. static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2, double t2s, double t2e, double precisionScale, Intersections& i) { Cubic c1, c2; sub_divide(cubic1, t1s, t1e, c1); sub_divide(cubic2, t2s, t2e, c2); SkTDArray<double> ts1; cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1); SkTDArray<double> ts2; cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; Cubic part1; sub_divide(cubic1, t1Start, t1, part1); Quadratic q1; demote_cubic_to_quad(part1, q1); // start here; // should reduceOrder be looser in this use case if quartic is going to blow up on an // extremely shallow quadratic? Quadratic s1; int o1 = reduceOrder(q1, s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; Cubic part2; sub_divide(cubic2, t2Start, t2, part2); Quadratic q2; demote_cubic_to_quad(part2, q2); Quadratic s2; double o2 = reduceOrder(q2, s2); Intersections locals; if (o1 == 3 && o2 == 3) { intersect2(q1, q2, locals); } else if (o1 <= 2 && o2 <= 2) { locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0], locals.fT[1]); } else if (o1 == 3 && o2 <= 2) { intersect(q1, (const _Line&) s2, locals); } else { SkASSERT(o1 <= 2 && o2 == 3); intersect(q2, (const _Line&) s1, locals); for (int s = 0; s < locals.fUsed; ++s) { SkTSwap(locals.fT[0][s], locals.fT[1][s]); } } for (int tIdx = 0; tIdx < locals.used(); ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx]; // if the computed t is not sufficiently precise, iterate _Point p1, p2; xy_at_t(cubic1, to1, p1.x, p1.y); xy_at_t(cubic2, to2, p2.x, p2.y); if (p1.approximatelyEqual(p2)) { i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2); } else { double dt1, dt2; computeDelta(cubic1, to1, (t1e - t1s), cubic2, to2, (t2e - t2s), dt1, dt2); double scale = precisionScale; if (dt1 > 0.125 || dt2 > 0.125) { scale /= 2; SkDebugf("%s scale=%1.9g\n", __FUNCTION__, scale); } #if SK_DEBUG ++debugDepth; assert(debugDepth < 10); #endif i.swap(); intersect2(cubic2, SkTMax(to2 - dt2, 0.), SkTMin(to2 + dt2, 1.), cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), scale, i); i.swap(); #if SK_DEBUG --debugDepth; #endif } } t2Start = t2; } t1Start = t1; } return i.intersected(); }