Пример #1
0
void keys(unsigned char key, int x, int y) {
    switch(key){
    case 'r':
        kfusion.setPose( toMatrix4( trans * rot * preTrans ));
        break;
    case 'c':
        kfusion.Reset();
        kfusion.setPose( toMatrix4( trans * rot * preTrans ));
        break;
    case 'd':
        cout << kfusion.pose << endl;
        break;
    case 'q':
        exit(0);
        break;
    }
    glutPostRedisplay();
}
Пример #2
0
void keys(unsigned char key, int x, int y){
    switch(key){
    case 'c':
        kfusion.Reset();
        kfusion.setPose(toMatrix4(initPose));
        reset = true;
        break;
    case 'q':
        exit(0);
        break;
    }
}
Пример #3
0
void keys(unsigned char key, int x, int y){
    switch(key){
    case 'c':
        kfusion.Reset();
        kfusion.setPose(toMatrix4(initPose));
        reset = true;
        break;
    case 'q':
        exit(0);
        break;
    case 'i':
        should_integrate = !should_integrate;
        break;
    case 't':
        render_texture = !render_texture;
        break;
    }
}
Пример #4
0
int main(int argc, char ** argv) {
    const float size = (argc > 1) ? atof(argv[1]) : 2.f;

    KFusionConfig config;

    // it is enough now to set the volume resolution once.
    // everything else is derived from that.
    // config.volumeSize = make_uint3(64);
    config.volumeSize = make_uint3(128);
    // config.volumeSize = make_uint3(256);

    // these are physical dimensions in meters
    config.volumeDimensions = make_float3(size);
    config.nearPlane = 0.4f;
    config.farPlane = 5.0f;
    config.mu = 0.1;
    config.combinedTrackAndReduce = false;

    // change the following parameters for using 640 x 480 input images
    config.inputSize = make_uint2(320,240); 
    config.camera =  make_float4(297.12732, 296.24240, 169.89365, 121.25151);

    // config.iterations is a vector<int>, the length determines
    // the number of levels to be used in tracking
    // push back more then 3 iteraton numbers to get more levels.
    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 4;

    config.dist_threshold = (argc > 2 ) ? atof(argv[2]) : config.dist_threshold;
    config.normal_threshold = (argc > 3 ) ? atof(argv[3]) : config.normal_threshold;

    initPose = SE3<float>(makeVector(size/2, size/2, 0, 0, 0, 0));

    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 2, config.inputSize.y * 2);
    glutCreateWindow("kfusion");

    kfusion.Init(config);
    if(printCUDAError())
        exit(1);

    kfusion.setPose(toMatrix4(initPose));

    lightScene.alloc(config.inputSize), depth.alloc(config.inputSize), lightModel.alloc(config.inputSize);
    depthImage.alloc(make_uint2(640, 480));

    if(InitKinect(depthImage.data()))
        exit(1);

    atexit(exitFunc);
    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

    return 0;
}
Пример #5
0
int main(int argc, char ** argv) {
    const float default_size = 2.f;

    KFusionConfig config;

    // Search for --help argument
    for (int i = 0; i < argc; ++i) {
        if (std::string(argv[i]) == "--help") {
            std::cout << "Usage: kinect [size] [dist_threshold] [normal_threshold]" << std::endl;
            std::cout << std::endl;
            std::cout << "Defaults:" << std::endl;
            std::cout << "  size: " << default_size << std::endl;
            std::cout << "  dist_threshold: " << config.dist_threshold << std::endl;
            std::cout << "  normal_threshold: " << config.normal_threshold << std::endl;
            return 0;
        }
    }

    const float size = (argc > 1) ? atof(argv[1]) : default_size;

    // it is enough now to set the volume resolution once.
    // everything else is derived from that.
    // config.volumeSize = make_uint3(64);
    // config.volumeSize = make_uint3(128);
//    config.volumeSize = make_uint3(256);
    config.volumeSize = make_uint3(512);

    // these are physical dimensions in meters
    config.volumeDimensions = make_float3(size);
    config.nearPlane = 0.4f;
    config.farPlane = 5.0f;
    config.mu = 0.1;
    config.combinedTrackAndReduce = false;

    // change the following parameters for using 640 x 480 input images
    config.inputSize = make_uint2(320,240);
//    config.inputSize = make_uint2(640,480);

    config.camera =  make_float4(531.15/2, 531.15/2, 640/4, 480/4);
//    config.camera =  make_float4(614.221/2, 614.221/2, 640/4, 480/4);

    // config.iterations is a vector<int>, the length determines
    // the number of levels to be used in tracking
    // push back more then 3 iteraton numbers to get more levels.
    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 4;

    config.dist_threshold = (argc > 2 ) ? atof(argv[2]) : config.dist_threshold;
    config.normal_threshold = (argc > 3 ) ? atof(argv[3]) : config.normal_threshold;

    initPose = SE3<float>(makeVector(size/2, size/2, 0, 0, 0, 0));


    //    rgbdDevice = RGBD::create(RGBD::kRGBDDeviceKinect);
    //    rgbdDevice = RGBD::create(RGBD::kRGBDRealSense);
    rgbdDevice = RGBD::create(RGBD::kRGBDDeviceOpenNI2);

    if (rgbdDevice == 0L) {
            std::cerr << "no capture device" << std::endl;
            return -1;
        }


    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 2 + 640, max(config.inputSize.y * 2, 480));
    glutCreateWindow("kfusion");

    kfusion.Init(config);

    // input buffers
    depthImage[0].alloc(make_uint2(640, 480));
    depthImage[1].alloc(make_uint2(640, 480));
    rgbImage.alloc(make_uint2(640, 480));

    // render buffers
    lightScene.alloc(config.inputSize), trackModel.alloc(config.inputSize), lightModel.alloc(config.inputSize);
    pos.alloc(make_uint2(640, 480)), normals.alloc(make_uint2(640, 480)), dep.alloc(make_uint2(640, 480)), texModel.alloc(make_uint2(640, 480));

    if(printCUDAError()) {
        cudaDeviceReset();
        return 1;
    }

    std::cout << "Using depthImage size: " << depthImage[0].size.x*depthImage[0].size.y * sizeof(uint16_t) << " bytes " << std::endl;
    std::cout << "Using rgbImage size: " << rgbImage.size.x*rgbImage.size.y * sizeof(uchar3) << " bytes " << std::endl;

    memset(depthImage[0].data(), 0, depthImage[0].size.x*depthImage[0].size.y * sizeof(uint16_t));
    memset(depthImage[1].data(), 0, depthImage[1].size.x*depthImage[1].size.y * sizeof(uint16_t));
    memset(rgbImage.data(), 0, rgbImage.size.x*rgbImage.size.y * sizeof(uchar3));

    uint16_t * buffers[2] = {depthImage[0].data(), depthImage[1].data()};



    rgbdDevice->setBuffers(buffers, (unsigned char *)rgbImage.data());

    if (rgbdDevice->open()){
        cudaDeviceReset();
        return 1;
    }



    kfusion.setPose(toMatrix4(initPose));

    // model rendering parameters
    preTrans = SE3<float>::exp(makeVector(0.0, 0, -size, 0, 0, 0));
    trans = SE3<float>::exp(makeVector(0.5, 0.5, 0.5, 0, 0, 0) * size);

    atexit(exitFunc);
    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutSpecialFunc(specials);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

//    CloseKinect();

    return 0;
}
Пример #6
0
int main(int argc, char ** argv) {

    benchmark = argc > 1 && string(argv[1]) == "-b";

    KFusionConfig config;
    config.volumeSize = make_uint3(128);

    config.combinedTrackAndReduce = false;

    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 5;

    config.inputSize = make_uint2(320, 240);
    config.camera = make_float4(100, 100, 160, 120);
    config.nearPlane = 0.001;

    config.maxweight = 100;
    config.mu = 0.1;

    config.dist_threshold = 0.2f;
    config.normal_threshold = 0.8f;

    kfusion.Init(config);
    if(printCUDAError()){
        cudaDeviceReset();
        exit(1);
    }

    reference.init(config.volumeSize, config.volumeDimensions);

    initVolumeWrap(reference, 1.0f);
    setBoxWrap(reference, make_float3(0.1f,0.1f,0.8f), make_float3(0.9f, 0.9f, 0.9f), -1.0f);
    setBoxWrap(reference, make_float3(0.1f,0.8f,0.1f), make_float3(0.9f, 0.9f, 0.9f), -1.0f);
    setBoxWrap(reference, make_float3(0.8f,0.1f,0.1f), make_float3(0.9f, 0.9f, 0.9f), -1.0f);
    setSphereWrap(reference, make_float3(0.5f), 0.2f, -1.0f);

    kfusion.setPose( toMatrix4( trans * rot * preTrans ));

    vertex.alloc(config.inputSize);
    normal.alloc(config.inputSize);
    depth.alloc(config.inputSize);
    rgb.alloc(config.inputSize);

    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 3, config.inputSize.y * 3);
    glutCreateWindow("kfusion test");

    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutSpecialFunc(specials);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

    cudaDeviceReset();

    return 0;
}
Пример #7
0
int main(int argc, char ** argv) {
    const float size = (argc > 1) ? atof(argv[1]) : 2.f;

    KFusionConfig config;

    // it is enough now to set the volume resolution once.
    // everything else is derived from that.
    // config.volumeSize = make_uint3(64);
    // config.volumeSize = make_uint3(128);
    config.volumeSize = make_uint3(256);

    // these are physical dimensions in meters
    config.volumeDimensions = make_float3(size);
    config.nearPlane = 0.4f;
    config.farPlane = 5.0f;
    config.mu = 0.1;
    config.combinedTrackAndReduce = false;

    // change the following parameters for using 640 x 480 input images
    config.inputSize = make_uint2(320,240);
    config.camera =  make_float4(531.15/2, 531.15/2, 640/4, 480/4);

    // config.iterations is a vector<int>, the length determines
    // the number of levels to be used in tracking
    // push back more then 3 iteraton numbers to get more levels.
    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 4;

    config.dist_threshold = (argc > 2 ) ? atof(argv[2]) : config.dist_threshold;
    config.normal_threshold = (argc > 3 ) ? atof(argv[3]) : config.normal_threshold;

    initPose = SE3<float>(makeVector(size/2, size/2, 0, 0, 0, 0));

    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 2 + 640, max(config.inputSize.y * 2, 480));
    glutCreateWindow("kfusion");

    kfusion.Init(config);

    // input buffers
    depthImage[0].alloc(make_uint2(640, 480));
    depthImage[1].alloc(make_uint2(640, 480));
    rgbImage.alloc(make_uint2(640, 480));

    // render buffers
    lightScene.alloc(config.inputSize), trackModel.alloc(config.inputSize), lightModel.alloc(config.inputSize);
    pos.alloc(make_uint2(640, 480)), normals.alloc(make_uint2(640, 480)), dep.alloc(make_uint2(640, 480)), texModel.alloc(make_uint2(640, 480));

    if(printCUDAError()) {
        cudaDeviceReset();
        return 1;
    }

    memset(depthImage[0].data(), 0, depthImage[0].size.x*depthImage[0].size.y * sizeof(uint16_t));
    memset(depthImage[1].data(), 0, depthImage[1].size.x*depthImage[1].size.y * sizeof(uint16_t));
    memset(rgbImage.data(), 0, rgbImage.size.x*rgbImage.size.y * sizeof(uchar3));

    uint16_t * buffers[2] = {depthImage[0].data(), depthImage[1].data()};
    if(InitKinect(buffers, (unsigned char *)rgbImage.data())){
        cudaDeviceReset();
        return 1;
    }

    kfusion.setPose(toMatrix4(initPose));

    // model rendering parameters
    preTrans = SE3<float>::exp(makeVector(0.0, 0, -size, 0, 0, 0));
    trans = SE3<float>::exp(makeVector(0.5, 0.5, 0.5, 0, 0, 0) * size);

    atexit(exitFunc);
    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutSpecialFunc(specials);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

    CloseKinect();

    return 0;
}