Пример #1
0
int main()
{
    double data[] = {
        0.0, 0.2, 0.4,
        0.3, 0.2, 0.4,
        0.4, 0.2, 0.4,
        0.5, 0.2, 0.4,
        5.0, 5.2, 8.4,
        6.0, 5.2, 7.4,
        4.0, 5.2, 4.4,
        10.3, 10.4, 10.5,
        10.1, 10.6, 10.7,
        11.3, 10.2, 10.9
    };

    const int size = 10; //Number of samples
    const int dim = 3;   //Dimension of feature
    const int cluster_num = 4; //Cluster number

    KMeans* kmeans = new KMeans(dim,cluster_num);
    int* labels = new int[size];
    kmeans->SetInitMode(KMeans::InitUniform);
	kmeans->Cluster(data,size,labels);

	for(int i = 0; i < size; ++i)
	{
	    printf("%f, %f, %f belongs to %d cluster\n", data[i*dim+0], data[i*dim+1], data[i*dim+2], labels[i]);
	}

	delete []labels;
	delete kmeans;

    return 0;
}
Пример #2
0
void RefinedStart::Cluster(const MatType& data,
                           const size_t clusters,
                           arma::mat& centroids) const
{
  // This will hold the sampled datasets.
  const size_t numPoints = size_t(percentage * data.n_cols);
  MatType sampledData(data.n_rows, numPoints);
  // vector<bool> is packed so each bool is 1 bit.
  std::vector<bool> pointsUsed(data.n_cols, false);
  arma::mat sampledCentroids(data.n_rows, samplings * clusters);

  for (size_t i = 0; i < samplings; ++i)
  {
    // First, assemble the sampled dataset.
    size_t curSample = 0;
    while (curSample < numPoints)
    {
      // Pick a random point in [0, numPoints).
      size_t sample = (size_t) math::RandInt(data.n_cols);

      if (!pointsUsed[sample])
      {
        // This point isn't used yet.  So we'll put it in our sample.
        pointsUsed[sample] = true;
        sampledData.col(curSample) = data.col(sample);
        ++curSample;
      }
    }

    // Now, using the sampled dataset, run k-means.  In the case of an empty
    // cluster, we re-initialize that cluster as the point furthest away from
    // the cluster with maximum variance.  This is not *exactly* what the paper
    // implements, but it is quite similar, and we'll call it "good enough".
    KMeans<> kmeans;
    kmeans.Cluster(sampledData, clusters, centroids);

    // Store the sampled centroids.
    sampledCentroids.cols(i * clusters, (i + 1) * clusters - 1) = centroids;

    pointsUsed.assign(data.n_cols, false);
  }

  // Now, we run k-means on the sampled centroids to get our final clusters.
  KMeans<> kmeans;
  kmeans.Cluster(sampledCentroids, clusters, centroids);
}
int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);
    static int index = 0;
    ///Laser Data
    LMS1xx LaserSensor;
    scanCfg cfg;
    scanData data;
    scanDataCfg dataCfg;
    status_t status;

    std::ofstream file;

    double start_angle=0;
    double stop_angle=0;
    double resolution=0;
    double frequency=0;

    ///Kmeans realated variables
    KMeans<> K;
    mat dataset;
    size_t cluster;
    Col<size_t> assignments;
    mat centroid;


    ///Connect to the Lasersensor
    LaserSensor.connect(host);

    if(LaserSensor.isConnected())
    {
        std::cout << "\nConnected !!!\n";

        LaserSensor.login();

        ///Get Laser Configurations
        cfg = LaserSensor.getScanCfg();
        //cfg.angleResolution = 0.25*10000.0;
        //cfg.scaningFrequency = 25*100;

        //LaserSensor.setScanCfg(cfg);
        //LaserSensor.saveConfig();
       // sleep(3);
        cfg = LaserSensor.getScanCfg();
        start_angle = cfg.startAngle/10000.0; //* DEG2RAD - M_PI/2;
        stop_angle = cfg.stopAngle/10000.0; //* DEG2RAD - M_PI/2;
        resolution = cfg.angleResolution/10000.0;
        frequency = cfg.scaningFrequency/100;

        std::cout << "Start Angle: " << start_angle;
        std::cout << "\tStop Angle: " << stop_angle;
        std::cout << "\tResolution: " << resolution;
        std::cout << "\tFrequency: " << frequency;
        std::cout << std::endl;

        dataCfg.outputChannel = 1;
        dataCfg.remission = true;
        dataCfg.resolution = 1;
        dataCfg.encoder = 0;
        dataCfg.position = false;
        dataCfg.deviceName = false;
        dataCfg.outputInterval = 1;

        LaserSensor.setScanDataCfg(dataCfg); ///Set Data Configuration of the laser data

        LaserSensor.startMeas();    ///Start Measurement

        do
        {
            status = LaserSensor.queryStatus();
            usleep(200);
        }
        while(status != ready_for_measurement);
        {
            LaserSensor.startDevice();
            LaserSensor.scanContinous(1);

            while(LaserSensor.isConnected())
            {
                LaserSensor.getData(data);  ///Get the Laser Data

                //                u_int16_t range[data.dist_len1];
                //                u_int16_t intensity[data.rssi_len1];
                int range[data.dist_len1];
                int intensity[data.rssi_len1];

                for(int i=0; i<data.dist_len1;i++)
                    range[i] = data.dist1[i];

                for(int i=0; i<data.rssi_len1;i++)
                    intensity[i] = data.rssi1[i];

                if (index == 0)
                {
                    index++;
                    std::cout << std::endl << "Data len = " << data.dist_len1 << std::endl;
                    std::cout << "Intensity len = " << data.rssi_len1 << std::endl;

                    ///distance assumed to be in mm
                    ///Start angle is -45 end is 225
                    float angle_scan = -45.0;
                    float x[1081], y[1081];   ///The resolution is 0.5 degress so 541 values
                    int index_range = 0;
                    double slope;
                    cluster = 2;
                    //centroid.zeros();
                    dataset.resize(2,1081);
                    dataset.zeros();

                    file.open("LaserData.txt");

                    while(1)
                    {
                        x[index_range] = range[index_range]*cos(angle_scan*DEG2RAD)/1000.0;
                        y[index_range] = range[index_range] * sin(angle_scan*DEG2RAD)/1000.0;
                        //std::cout << "range: " << range[index_range] << " angle: " << angle_scan;
                        //std::cout << " x: " << x[index_range] << " y : " << y[index_range] << std::endl;
                        angle_scan += 0.25;

                        //if(intensity[index_range] >=850)
                        {
                            file << x[index_range] << "," << y[index_range] << "," << intensity[index_range] << std::endl;
                        }

                        if (angle_scan > 225.0)
                        {
                            break;
                        }
                        index_range++;
                        usleep(100);
                    }
                    int index_tmp = 0;
                    for(int i=0; i<1081;i++)
                    {
                        if (intensity[i] >= 900)
                        {
                            dataset(0,index_tmp) = x[i];
                            dataset(1,index_tmp) = y[i];

                            std::cout << "\n" << dataset[0,index_tmp] << "\t" << dataset[1,index_tmp];
                            index_tmp++;
                        }
                    }
                    std::cout << "\nKMeans Calculations!!!" << std::endl;
                    dataset.resize(2,index_tmp);

                    ///Actual KMeans CLustering
                    K.Cluster((arma::mat) dataset,2,assignments,centroid);

/*************************************************************************************************************************
                    static double sum_x[2];
                    static double sum_y[2];
                    int number_dist1=0;
                    int number_dist2=0;

                    for(int i=0; i < assignments.size(); i++) {
                        switch(assignments[i])
                        {
                            case 0:
                                sum_x[0]+=dataset(0,i);
                                sum_y[0]+=dataset(1,i);
                                number_dist1++;
                                break;
                            case 1:
                                sum_x[1]+=dataset(0,i);
                                sum_y[1]+=dataset(1,i);
                                number_dist2++;
                                break;
                        };

                        std::cout << "\n" << assignments[i];
                    }

                    double center1_x, center1_y;
                    double center2_x, center2_y;

                    center1_x = sum_x[0]/number_dist1;
                    center1_y = sum_y[0]/number_dist1;
                    center2_x = sum_x[1]/number_dist2;
                    center2_y = sum_y[1]/number_dist2;

                    std::cout<<center1_x<<"," << center1_y<<"   " << center2_x<<","<<center2_y<<endl;

**************************************************************************************************************************/

//std::cout << "\n" << centroid(0,0) << "\t" << centroid(1,0) << "\t"<< centroid(0,1) << "\t"<< centroid(1,1)<<"\n";

                    slope = (centroid(1,1) - centroid(1,0)) / (centroid(0,1) - centroid(0,0));
                    slope = (atan(slope))*RAD2DEG;

                    std::cout << "\nclusters= " << cluster << std::endl;
                    std::cout << "\nOrientation= " << slope << std::endl;
                }
                usleep(200);
            }
            std::cout << "\n Sensor Disconnected \n";

            ///Disconnect the Laser
            LaserSensor.scanContinous(0);
            LaserSensor.stopMeas();
            LaserSensor.disconnect();
            file.close();
        }
    }
    else
    {
        std::cout <<"\nSensor Not Connected !!!\n";
    }

    return a.exec();
}
Пример #4
0
arma::vec Vespucci::Math::KMeansWrapper::Cluster(const arma::mat &data, const size_t clusters, arma::mat &centroids)
{
    using namespace mlpack::metric;
    using namespace mlpack::kmeans;
    arma::Row<size_t> assignments;
    arma::vec assignments_vec;
    if (allow_empty_){
        if (metric_ == "squaredeuclidean"){
            if (init_ == "sampleinitialization"){
                KMeans<SquaredEuclideanDistance, SampleInitialization, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<SquaredEuclideanDistance, RandomPartition, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<SquaredEuclideanDistance, RefinedStart, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
        else if (metric_ == "euclidean"){
            if (init_ == "sampleinitialization"){
                KMeans<EuclideanDistance, SampleInitialization, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<EuclideanDistance, RandomPartition, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<EuclideanDistance, RefinedStart, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
        else if (metric_ == "manhattan"){
            if (init_ == "sampleinitialization"){
                KMeans<ManhattanDistance, SampleInitialization, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<ManhattanDistance, RandomPartition, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<ManhattanDistance, RefinedStart, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
        else if (metric_ == "chebyshev"){
            if (init_ == "sampleinitialization"){
                KMeans<ChebyshevDistance, SampleInitialization, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<ChebyshevDistance, RandomPartition, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<ChebyshevDistance, RefinedStart, AllowEmptyClusters> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
    }
    else{
        if (metric_ == "squaredeuclidean"){
            if (init_ == "sampleinitialization"){
                KMeans<SquaredEuclideanDistance, SampleInitialization> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<SquaredEuclideanDistance, RandomPartition> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<SquaredEuclideanDistance, RefinedStart> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
        else if (metric_ == "euclidean"){
            if (init_ == "sampleinitialization"){
                KMeans<EuclideanDistance, SampleInitialization> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<EuclideanDistance, RandomPartition> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<EuclideanDistance, RefinedStart> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
        else if (metric_ == "manhattan"){
            if (init_ == "sampleinitialization"){
                KMeans<ManhattanDistance, SampleInitialization> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<ManhattanDistance, RandomPartition> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<ManhattanDistance, RefinedStart> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
        else if (metric_ == "chebyshev"){
            if (init_ == "sampleinitialization"){
                KMeans<ChebyshevDistance, SampleInitialization> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "randompartition"){
                KMeans<ChebyshevDistance, RandomPartition> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
            else if (init_ == "refinedstart"){
                KMeans<ChebyshevDistance, RefinedStart> k;
                k.Cluster(data, clusters, assignments, centroids);
            }
        }
    }

    assignments_vec.set_size(assignments.n_elem);
    for (arma::uword i = 0; i < assignments.n_elem; ++i)
        assignments_vec(i) = double(assignments(i) + 1);
    return assignments_vec;
}
Пример #5
0
void GMM::Init(const char* sampleFileName)
{
	const double MIN_VAR = 1E-10;

	KMeans* kmeans = new KMeans(m_dimNum, m_mixNum);
	kmeans->SetInitMode(KMeans::InitUniform);
	kmeans->Cluster(sampleFileName, "gmm_init.tmp");

	int* counts = new int[m_mixNum];
	double* overMeans = new double[m_dimNum];	// Overall mean of training data
	for (int i = 0; i < m_mixNum; i++)
	{
		counts[i] = 0;
		m_priors[i] = 0;
		memcpy(m_means[i], kmeans->GetMean(i), sizeof(double) * m_dimNum);
		memset(m_vars[i], 0, sizeof(double) * m_dimNum);
	}
	memset(overMeans, 0, sizeof(double) * m_dimNum);
	memset(m_minVars, 0, sizeof(double) * m_dimNum);

	// Open the sample and label file to initialize the model
	ifstream sampleFile(sampleFileName, ios_base::binary);
	//assert(sampleFile);

	ifstream labelFile("gmm_init.tmp", ios_base::binary);
	//assert(labelFile);

	int size = 0;
	sampleFile.read((char*)&size, sizeof(int));
	sampleFile.seekg(2 * sizeof(int), ios_base::beg);
	labelFile.seekg(sizeof(int), ios_base::beg);

	double* x = new double[m_dimNum];
	int label = -1;

	for (int i = 0; i < size; i++)
	{
		sampleFile.read((char*)x, sizeof(double) * m_dimNum);
		labelFile.read((char*)&label, sizeof(int));

		// Count each Gaussian
		counts[label]++;
		double* m = kmeans->GetMean(label);
		for (int d = 0; d < m_dimNum; d++)
		{
			m_vars[label][d] += (x[d] - m[d]) * (x[d] - m[d]);
		}

		// Count the overall mean and variance.
		for (int d = 0; d < m_dimNum; d++)
		{
			overMeans[d] += x[d];
			m_minVars[d] += x[d] * x[d];
		}
	}

	// Compute the overall variance (* 0.01) as the minimum variance.
	for (int d = 0; d < m_dimNum; d++)
	{
		overMeans[d] /= size;
		m_minVars[d] = max(MIN_VAR, 0.01 * (m_minVars[d] / size - overMeans[d] * overMeans[d]));
	}

	// Initialize each Gaussian.
	for (int i = 0; i < m_mixNum; i++)
	{
		m_priors[i] = 1.0 * counts[i] / size;

		if (m_priors[i] > 0)
		{
			for (int d = 0; d < m_dimNum; d++)
			{
				m_vars[i][d] = m_vars[i][d] / counts[i];

				// A minimum variance for each dimension is required.
				if (m_vars[i][d] < m_minVars[d])
				{
					m_vars[i][d] = m_minVars[d];
				}
			}
		}
		else
		{
			memcpy(m_vars[i], m_minVars, sizeof(double) * m_dimNum);
			cout << "[WARNING] Gaussian " << i << " of GMM is not used!\n";
		}
	}

	delete kmeans;
	delete[] x;
	delete[] counts;
	delete[] overMeans;

	sampleFile.close();
	labelFile.close();
}
Пример #6
0
void GMM::Init(double *data, int N)
{
	const double MIN_VAR = 1E-10;

	KMeans* kmeans = new KMeans(m_dimNum, m_mixNum);
	kmeans->SetInitMode(KMeans::InitUniform);
	int *Label;
	Label=new int[N];
	kmeans->Cluster(data,N,Label);

	int* counts = new int[m_mixNum];
	double* overMeans = new double[m_dimNum];	// Overall mean of training data
	for (int i = 0; i < m_mixNum; i++)
	{
		counts[i] = 0;
		m_priors[i] = 0;
		memcpy(m_means[i], kmeans->GetMean(i), sizeof(double) * m_dimNum);
		memset(m_vars[i], 0, sizeof(double) * m_dimNum);
	}
	memset(overMeans, 0, sizeof(double) * m_dimNum);
	memset(m_minVars, 0, sizeof(double) * m_dimNum);

	int size = 0;
	size=N;

	double* x = new double[m_dimNum];
	int label = -1;

	for (int i = 0; i < size; i++)
	{
		for(int j=0;j<m_dimNum;j++)
			x[j]=data[i*m_dimNum+j];
		label=Label[i];

		// Count each Gaussian
		counts[label]++;
		double* m = kmeans->GetMean(label);
		for (int d = 0; d < m_dimNum; d++)
		{
			m_vars[label][d] += (x[d] - m[d]) * (x[d] - m[d]);
		}

		// Count the overall mean and variance.
		for (int d = 0; d < m_dimNum; d++)
		{
			overMeans[d] += x[d];
			m_minVars[d] += x[d] * x[d];
		}
	}

	// Compute the overall variance (* 0.01) as the minimum variance.
	for (int d = 0; d < m_dimNum; d++)
	{
		overMeans[d] /= size;
		m_minVars[d] = max(MIN_VAR, 0.01 * (m_minVars[d] / size - overMeans[d] * overMeans[d]));
	}

	// Initialize each Gaussian.
	for (int i = 0; i < m_mixNum; i++)
	{
		m_priors[i] = 1.0 * counts[i] / size;

		if (m_priors[i] > 0)
		{
			for (int d = 0; d < m_dimNum; d++)
			{
				m_vars[i][d] = m_vars[i][d] / counts[i];

				// A minimum variance for each dimension is required.
				if (m_vars[i][d] < m_minVars[d])
				{
					m_vars[i][d] = m_minVars[d];
				}
			}
		}
		else
		{
			memcpy(m_vars[i], m_minVars, sizeof(double) * m_dimNum);
			cout << "[WARNING] Gaussian " << i << " of GMM is not used!\n";
		}
	}
	delete kmeans;
	delete[] x;
	delete[] counts;
	delete[] overMeans;
	delete[] Label;

}
Пример #7
0
void RefinedStart::Cluster(const MatType& data,
                           const size_t clusters,
                           arma::Col<size_t>& assignments) const
{
  math::RandomSeed(std::time(NULL));

  // This will hold the sampled datasets.
  const size_t numPoints = size_t(percentage * data.n_cols);
  MatType sampledData(data.n_rows, numPoints);
  // vector<bool> is packed so each bool is 1 bit.
  std::vector<bool> pointsUsed(data.n_cols, false);
  arma::mat sampledCentroids(data.n_rows, samplings * clusters);

  // We will use these objects repeatedly for clustering.
  arma::Col<size_t> sampledAssignments;
  arma::mat centroids;
  KMeans<> kmeans;

  for (size_t i = 0; i < samplings; ++i)
  {
    // First, assemble the sampled dataset.
    size_t curSample = 0;
    while (curSample < numPoints)
    {
      // Pick a random point in [0, numPoints).
      size_t sample = (size_t) math::RandInt(data.n_cols);

      if (!pointsUsed[sample])
      {
        // This point isn't used yet.  So we'll put it in our sample.
        pointsUsed[sample] = true;
        sampledData.col(curSample) = data.col(sample);
        ++curSample;
      }
    }

    // Now, using the sampled dataset, run k-means.  In the case of an empty
    // cluster, we re-initialize that cluster as the point furthest away from
    // the cluster with maximum variance.  This is not *exactly* what the paper
    // implements, but it is quite similar, and we'll call it "good enough".
    kmeans.Cluster(sampledData, clusters, sampledAssignments, centroids);

    // Store the sampled centroids.
    sampledCentroids.cols(i * clusters, (i + 1) * clusters - 1) = centroids;

    pointsUsed.assign(data.n_cols, false);
  }

  // Now, we run k-means on the sampled centroids to get our final clusters.
  kmeans.Cluster(sampledCentroids, clusters, sampledAssignments, centroids);

  // Turn the final centroids into assignments.
  assignments.set_size(data.n_cols);
  for (size_t i = 0; i < data.n_cols; ++i)
  {
    // Find the closest centroid to this point.
    double minDistance = std::numeric_limits<double>::infinity();
    size_t closestCluster = clusters;

    for (size_t j = 0; j < clusters; ++j)
    {
      const double distance = kmeans.Metric().Evaluate(data.col(i),
          centroids.col(j));

      if (distance < minDistance)
      {
        minDistance = distance;
        closestCluster = j;
      }
    }

    // Assign the point to its closest cluster.
    assignments[i] = closestCluster;
  }
}