void KVINDRAPulserDataTree::CreateTree() { // Create new TTree with // 1 branch 'Run' with run number // 1 branch for each acquisition parameter of every detector (except time markers) // 2 branches for each 'PILA_...' or 'SI_PIN...' parameter, suffixed with '_laser' and '_gene' // // NB if multidetector has not been built, it will be built by this method fArb = new TTree("PulserData", "Created by KVINDRAPulserDataTree"); fArb->SetDirectory(0); fArb->Branch("Run", &fRun, "Run/I"); if (!gIndra) KVMultiDetArray::MakeMultiDetector(gDataSet->GetName()); KVSeqCollection* acq_pars = gIndra->GetACQParams(); fTab_siz = acq_pars->GetEntries() + 20; fVal = new Float_t[fTab_siz]; fIndex = new THashTable(20, 5); fIndex->SetOwner(kTRUE); TIter nxtACQ(acq_pars); KVACQParam* ap = 0; Int_t ap_num = 0; KVBase* iob; while ((ap = (KVACQParam*)nxtACQ())) { TString ap_name(ap->GetName()); TString ap_type(ap->GetType()); if (ap_name.BeginsWith("PILA") || ap_name.BeginsWith("SI_PIN")) { ap_name += "_laser"; iob = new KVBase(ap_name.Data()); iob->SetNumber(ap_num); fIndex->Add(iob); fArb->Branch(ap_name.Data(), &fVal[ap_num++] , Form("%s/F", ap_name.Data())); ap_name.Form("%s%s", ap->GetName(), "_gene"); iob = new KVBase(ap_name.Data()); iob->SetNumber(ap_num); fIndex->Add(iob); fArb->Branch(ap_name.Data(), &fVal[ap_num++] , Form("%s/F", ap_name.Data())); } else if (ap_type != "T") { iob = new KVBase(ap_name.Data()); iob->SetNumber(ap_num); fIndex->Add(iob); fArb->Branch(ap_name.Data(), &fVal[ap_num++] , Form("%s/F", ap_name.Data())); } if (ap_num > fTab_siz - 2) { Error("CreateTree", "Number of branches to create is greater than estimated (%d). Not all parameters can be treated.", fTab_siz); return; } } //keep number of used 'slots' in array fTab_siz = ap_num; }
void KVGANILDataReader::ConnectRawDataParameters() { //Private utility method called by KVGANILDataReader ctor. //fParameters is filled with a KVACQParam for every acquisition parameter in the file. //If there exists a gMultiDetArray corresponding to this data, we use the KVACQParams //already defined for the detectors of the array whenever possible. //For any parameters for which no KVACQParam already exists (a fortiori if no //gMultiDetArray exists) we create new KVACQParam objects which will be deleted //with this KVGANILDataReader (these objects can be accessed from the list //returned by GetUnknownParameters()). //To access the full list of data parameters in the file after this method has been //called (i.e. after the file is opened), use GetRawDataParameters(). TIter next( fGanilData->GetListOfDataParameters() ); KVACQParam *par; GTDataPar* daq_par; while ((daq_par = (GTDataPar*) next())) {//loop over all parameters par=CheckACQParam( daq_par->GetName() ); fGanilData->Connect(par->GetName(), par->ConnectData()); par->SetNumber(daq_par->Index()); par->SetNbBits(daq_par->Bits()); fParameters->Add(par); } }
Int_t KVSpectroDetector::GetMult(Option_t *opt){ // Returns the multiplicity of fired (value above the pedestal) // acquisition parameters if opt = "" (default). // If opt = "root" returns the multiplicity of only fired acq. // parameters with GetName() containing "root". For example if // you want the multiplicity of fired segments B of a child class // KVHarpeeIC call GetMult("ECHI_B"). Int_t mult = 0; TString str( opt ); Bool_t withroot = !str.IsNull(); TIter next( GetACQParamList() ); KVACQParam *par = NULL; while( (par = (KVACQParam *)next()) ){ if( withroot ){ str = par->GetName(); if( !str.Contains( opt ) ) continue; } if( par->Fired("P") ) mult++; } return mult; }
void KVGANILDataReader::SetUserTree(TTree* T, Option_t* opt) { // To fill a TTree with the data in the current file, create a TTree: // TFile* file = new TFile("run1.root","recreate"); // TTree* T = new TTree("Run1", "Raw data for Run1"); // and then call this method: SetUserTree(T) // If you read all events of the file, the TTree will be automatically filled // with data : // while( runfile->GetNextEvent() ) ; // // Two different TTree structures are available, depending on the option string: // // opt = "arrays": [default] // // The TTree will have the following structure: // // *Br 0 :NbParFired : NbParFired/I = number of fired parameters in event // *............................................................................* // *Br 1 :ParNum : ParNum[NbParFired]/i = array of indices of fired parameters // *............................................................................* // *Br 2 :ParVal : ParVal[NbParFired]/s = array of values of fired parameters // // This structure is the fastest to fill and produces the smallest file sizes. // In order to be able to directly access the parameters as if option "leaves" were used // (i.e. one branch/leaf for each parameter), we add two aliases for each parameter to // the tree: // PARNAME = value of parameter if present in event // PARNAME_M = number of times parameter appears in event // Assuming that each parameter only appears at most once in each event, i.e. PARNAME_M=0 or 1, // then // root[0] T->Draw("PARNAME", "PARNAME_M") // will histogram the value of PARNAME for each event in which it is present. // (if the selection condition "PARNAME_M" is not used, the histogram will also be filled with a 0 // for each event in which PARNAME does not appear). // N.B. the PARNAME alias is in fact the sum of the values of PARNAME in each event. // If PARNAME_M>1 in some events, it is not the individual values but their sum which will // be histogrammed in this case. // // Thus, if the data file has parameters called "PAR_1" and "PAR_2", // the following command will work // // root[0] T->Draw("PAR_1:PAR_2", "PAR_1_M&&PAR_2_M", "col") // // even though no branches "PAR_1" or "PAR_2" exist. // // // // opt = "leaves": // // The TTree will have a branch/leaf for each parameter. This option is slower and produces // larger files. // // If the option string contains both "arrays" and "leaves", then both structures will be used // (in this case there is a high redundancy, as each parameter is stored twice). // // The full list of parameters is stored in a TObjArray in the list returned by TTree::GetUserInfo(). // Each parameter is represented by a TNamed object. // In order to retrieve the name of the parameter with index 674 (e.g. taken from branch ParNum), // do: // TObjArray* parlist = (TObjArray*) T->GetUserInfo()->FindObject("ParameterList"); // cout << "Par 674 name = " << (*parlist)[674]->GetName() << endl; // // // Automatic creation & filling of Scalers TTree // // give an option string containing "scalers", i.e. "leaves,scalers", or "ARRAYS+SCALERS", etc. // a TTree with name 'Scalers' will be created, all scaler buffers will be written in it. TString option = opt; option.ToUpper(); make_arrays = option.Contains("ARRAYS"); make_leaves = option.Contains("LEAVES"); Bool_t make_scalers = option.Contains("SCALERS"); if(make_scalers){ fGanilData->SetScalerBuffersManagement(GTGanilData::kAutoWriteScaler); } fUserTree = T; if( make_arrays ){ Int_t maxParFired = GetRawDataParameters()->GetEntries(); ParVal = new UShort_t[maxParFired]; ParNum = new UInt_t[maxParFired]; fUserTree->Branch("NbParFired", &NbParFired, "NbParFired/I"); fUserTree->Branch("ParNum", ParNum, "ParNum[NbParFired]/i"); fUserTree->Branch("ParVal", ParVal, "ParVal[NbParFired]/s"); } if( make_leaves ){ TIter next_rawpar( GetRawDataParameters() ); KVACQParam* acqpar; while( (acqpar = (KVACQParam*)next_rawpar()) ){ TString leaf; leaf.Form("%s/S", acqpar->GetName()); // for parameters with <=8 bits only use 1 byte for storage if(acqpar->GetNbBits()<=8) leaf += "1"; fUserTree->Branch( acqpar->GetName(), *(acqpar->ConnectData()), leaf.Data() ); } } #if ROOT_VERSION_CODE > ROOT_VERSION(5,25,4) #if ROOT_VERSION_CODE < ROOT_VERSION(5,26,1) // The TTree::OptimizeBaskets mechanism is disabled, as for ROOT versions < 5.26/00b // this lead to a memory leak fUserTree->SetAutoFlush(0); #endif #endif // add list of parameter names in fUserTree->GetUserInfos() // and if option="arrays" add aliases for each parameter & its multiplicity // TObjArray has to be as big as the largest parameter number in the list // of raw data parameters. So first loop over parameters to find max param number. UInt_t maxpar = 0; TIter next(GetRawDataParameters()); KVACQParam* par; while( (par=(KVACQParam*)next()) ) if (par->GetNumber()>maxpar) maxpar=par->GetNumber(); TObjArray *parlist = new TObjArray(maxpar,1); parlist->SetName("ParameterList"); next.Reset(); while( (par = (KVACQParam*)next()) ){ parlist->AddAt( new TNamed( par->GetName(), Form("index=%d",par->GetNumber()) ), par->GetNumber() ); if( make_arrays ){ fUserTree->SetAlias( par->GetName(), Form("Sum$((ParNum==%d)*ParVal)", par->GetNumber() ) ); fUserTree->SetAlias( Form("%s_M", par->GetName()), Form("Sum$(ParNum==%d)", par->GetNumber() ) ); } } fUserTree->GetUserInfo()->Add(parlist); }
void KVVAMOSDetector::SetCalibrators() { // Setup the calibrators for this detector. Call once name // has been set. // The calibrators are KVFunctionCal. // By default the all the calibration functions are first-degree // polynomial function and the range [Xmin,Xmax]=[0,4096]. // Here the calibrator are not ready (KVFunctionCal::GetStatus()). // You have to give the parameters and change the status // (see KVFunctionCal::SetParameter(...) and KVFunctionCal::SetStatus(...)) TIter nextpar(GetACQParamList()); KVACQParam* par = NULL; Double_t maxch = 16384.; // 14 bits TString calibtype("ERROR"); while ((par = (KVACQParam*)nextpar())) { Bool_t isTparam = kFALSE; if (par->IsType("E")) { calibtype = "channel->MeV"; } else if (par->IsType("Q")) { calibtype = "channel->Volt"; maxch = 4096.; // 12 bits } else if (par->GetType()[0] == 'T') { isTparam = kTRUE; calibtype = "channel->ns"; } else continue; calibtype.Append(" "); calibtype.Append(par->GetName()); TF1* func = new TF1(calibtype.Data(), "pol1", 0., maxch); KVFunctionCal* c = new KVFunctionCal(this, func); c->SetType(calibtype.Data()); c->SetLabel(par->GetLabel()); c->SetNumber(par->GetNumber()); c->SetUniqueID(par->GetUniqueID()); c->SetACQParam(par); c->SetStatus(kFALSE); if (!AddCalibrator(c)) delete c; else if (isTparam) { if (!fTlist) fTlist = new TList; fTlist->Add(par); if (!fT0list) fT0list = new TList; fT0list->Add(new KVNamedParameter(par->GetName(), 0.)); } } // Define and set to zero the T0 values for time of flight measurment // from this detector. The time of flight acq parameters are associated // to gVamos if (gVamos) { TIter next_vacq(gVamos->GetVACQParams()); while ((par = (KVACQParam*)next_vacq())) { if ((par->GetType()[0] == 'T') && IsStartForT(par->GetName() + 1)) { if (!fTlist) fTlist = new TList; fTlist->Add(par); if (!fT0list) fT0list = new TList; fT0list->Add(new KVNamedParameter(par->GetName(), 0.)); } } } }
//_______________________________________________________________// void KVINDRAUpDater::CheckStatusOfDetectors(KVDBRun* kvrun) { KVRList* absdet = kvrun->GetLinks("Absent Detectors"); KVRList* oooacq = kvrun->GetLinks("OoO ACQPars"); KVRList* ooodet = kvrun->GetLinks("OoO Detectors"); TIter next(fArray->GetDetectors()); KVDetector* det; KVACQParam* acq; Int_t ndet_absent = 0; Int_t ndet_ooo = 0; Int_t nacq_ooo = 0; while ((det = (KVDetector*)next())) { //Test de la presence ou non du detecteur if (!absdet) { det->SetPresent(); } else { if (absdet->FindObject(det->GetName(), "Absent Detector")) { det->SetPresent(kFALSE); ndet_absent += 1; } else { det->SetPresent(); } } if (det->IsPresent()) { //Test du bon fonctionnement ou non du detecteur if (!ooodet) { det->SetDetecting(); } else { if (ooodet->FindObject(det->GetName(), "OoO Detector")) { det->SetDetecting(kFALSE); ndet_ooo += 1; } else { det->SetDetecting(); } } //Test du bon fonctionnement ou non des parametres d acquisition if (det->IsDetecting()) { TIter next_acq(det->GetACQParamList()); if (!oooacq) { while ((acq = (KVACQParam*)next_acq())) { acq->SetWorking(); } } else { Int_t noff = 0; while ((acq = (KVACQParam*)next_acq())) { if (oooacq->FindObject(acq->GetName(), "OoO ACQPar")) { acq->SetWorking(kFALSE); noff += 1; nacq_ooo += 1; } else { acq->SetWorking(); } } if (noff == 3) { det->SetDetecting(kFALSE); ndet_ooo += 1; nacq_ooo -= 3; } } } } } Info("KVINDRAUpDater", "%d detecteurs absents", ndet_absent); Info("KVINDRAUpDater", "%d detecteurs ne fonctionnent pas", ndet_ooo); Info("KVINDRAUpDater", "%d parametres d acquisition ne fonctionnent pas", nacq_ooo); }
void KVINDRARawDataReconstructor::InitRun() { // Creates new ROOT file with TTree for reconstructed/calibrated events. // By default this file will be written in the same data repository as the raw data file we are reading. // This can be changed by setting the environment variable(s): // // Reconstruction.DataAnalysisTask.OutputRepository: [name of repository] // [name of dataset].Reconstruction.DataAnalysisTask.OutputRepository: [name of repository] // // If no value is set for the current dataset (second variable), the value of the // first variable will be used. If neither is defined, the new file will be written in the same repository as // the raw file (if possible, i.e. if repository is not remote). // Create new KVINDRAReconEvent used to reconstruct & store events // The condition used to seed new reconstructed particles (see KVReconstructedEvent::AnalyseTelescopes) // is set by reading the value of the environment variables: // Reconstruction.DataAnalysisTask.ParticleSeedCond: [all/any] // [name of dataset].Reconstruction.DataAnalysisTask.ParticleSeedCond: [all/any] // If no value is set for the current dataset (second variable), the value of the // first variable will be used. if (!recev) recev = new KVINDRAReconEvent; recev->SetPartSeedCond(gDataSet->GetDataSetEnv("Reconstruction.DataAnalysisTask.ParticleSeedCond")); // get dataset to which we must associate new run KVDataSet* OutputDataset = gDataRepositoryManager->GetDataSet(gDataSet->GetOutputRepository(taskname), gDataSet->GetName()); file = OutputDataset->NewRunfile(datatype.Data(), fRunNumber); cout << "Writing \"" << datatype.Data() << "\" events in ROOT file " << file->GetName() << endl; //tree for raw data rawtree = new TTree("RawData", Form("%s : %s : raw data", gIndraDB->GetRun(fRunNumber)->GetName(), gIndraDB->GetRun(fRunNumber)->GetTitle())); rawtree->Branch("RunNumber", &fRunNumber, "RunNumber/I"); rawtree->Branch("EventNumber", &fEventNumber, "EventNumber/I"); // the format of the raw data tree must be "arrays" : we depend on it in KVINDRAReconDataAnalyser // in order to read the raw data and set the detector acquisition parameters TString raw_opt = "arrays"; GetRawDataReader()->SetUserTree(rawtree, raw_opt.Data()); Info("InitRun", "Created raw data tree (%s : %s). Format: %s", rawtree->GetName(), rawtree->GetTitle(), raw_opt.Data()); #if ROOT_VERSION_CODE > ROOT_VERSION(5,25,4) #if ROOT_VERSION_CODE < ROOT_VERSION(5,26,1) // The TTree::OptimizeBaskets mechanism is disabled, as for ROOT versions < 5.26/00b // this lead to a memory leak rawtree->SetAutoFlush(0); #endif #endif //tree for reconstructed events tree = new TTree("ReconstructedEvents", Form("%s : %s : %s events created from raw data", gIndraDB->GetRun(fRunNumber)->GetName(), gIndraDB->GetRun(fRunNumber)->GetTitle(), datatype.Data()) ); #if ROOT_VERSION_CODE > ROOT_VERSION(5,25,4) #if ROOT_VERSION_CODE < ROOT_VERSION(5,26,1) // The TTree::OptimizeBaskets mechanism is disabled, as for ROOT versions < 5.26/00b // this lead to a memory leak tree->SetAutoFlush(0); #endif #endif //leaves for reconstructed events KVEvent::MakeEventBranch(tree, "INDRAReconEvent", "KVINDRAReconEvent", &recev); Info("InitRun", "Created reconstructed data tree %s : %s", tree->GetName(), tree->GetTitle()); //tree for gene data genetree = new TTree("GeneData", Form("%s : %s : gene data", gIndraDB->GetRun(fRunNumber)->GetName(), gIndraDB->GetRun(fRunNumber)->GetTitle())); //we add to the 'gene tree' a branch for every acquisition parameter of the detector genetree->Branch("RunNumber", &fRunNumber, "RunNumber/I"); genetree->Branch("EventNumber", &fEventNumber, "EventNumber/I"); KVACQParam* acqpar; TIter next_acqpar(gIndra->GetACQParams()); while ((acqpar = (KVACQParam*)next_acqpar())) { genetree->Branch(acqpar->GetName(), *(acqpar->ConnectData()), Form("%s/S", acqpar->GetName())); } #if ROOT_VERSION_CODE > ROOT_VERSION(5,25,4) #if ROOT_VERSION_CODE < ROOT_VERSION(5,26,1) // The TTree::OptimizeBaskets mechanism is disabled, as for ROOT versions < 5.26/00b // this lead to a memory leak genetree->SetAutoFlush(0); #endif #endif Info("InitRun", "Created pulser/laser data tree (%s : %s) for %d parameters", genetree->GetName(), genetree->GetTitle(), genetree->GetNbranches()); //initialise number of reconstructed events nb_recon = 0; }