Пример #1
0
void
ComputeFullJacobianThread::computeJacobian()
{
  std::vector<std::pair<MooseVariable *, MooseVariable *> > & ce = _fe_problem.couplingEntries(_tid);
  for (std::vector<std::pair<MooseVariable *, MooseVariable *> >::iterator it = ce.begin(); it != ce.end(); ++it)
  {
    MooseVariable & ivariable = *(*it).first;
    MooseVariable & jvariable = *(*it).second;

    unsigned int ivar = ivariable.number();
    unsigned int jvar = jvariable.number();

    if (ivariable.activeOnSubdomain(_subdomain) && jvariable.activeOnSubdomain(_subdomain))
    {
      // only if there are dofs for j-variable (if it is subdomain restricted var, there may not be any)
      const std::vector<KernelBase *> & kernels = _sys._kernels[_tid].activeVar(ivar);
      for (std::vector<KernelBase *>::const_iterator kt = kernels.begin(); kt != kernels.end(); ++kt)
      {
        KernelBase * kernel = *kt;
        if ((kernel->variable().number() == ivar) && kernel->isImplicit())
        {
          kernel->subProblem().prepareShapes(jvar, _tid);
          kernel->computeOffDiagJacobian(jvar);
        }
      }
    }
  }

  const std::vector<MooseVariableScalar *> & scalar_vars = _sys.getScalarVariables(_tid);
  if (scalar_vars.size() > 0)
  {
    // go over nl-variables (non-scalar)
    const std::vector<MooseVariable *> & vars = _sys.getVariables(_tid);
    for (std::vector<MooseVariable *>::const_iterator it = vars.begin(); it != vars.end(); it++)
    {
      MooseVariable & ivar = *(*it);
      if (ivar.activeOnSubdomain(_subdomain) > 0)
      {
        // for each variable get the list of active kernels
        const std::vector<KernelBase *> & kernels = _sys._kernels[_tid].activeVar(ivar.number());
        for (std::vector<KernelBase *>::const_iterator kt = kernels.begin(); kt != kernels.end(); ++kt)
        {
          KernelBase * kernel = *kt;
          if (kernel->isImplicit())
          {
            // now, get the list of coupled scalar vars and compute their off-diag jacobians
            const std::vector<MooseVariableScalar *> coupled_scalar_vars = kernel->getCoupledMooseScalarVars();
            for (std::vector<MooseVariableScalar *>::const_iterator jt = coupled_scalar_vars.begin(); jt != coupled_scalar_vars.end(); jt++)
            {
              MooseVariableScalar & jvar = *(*jt);
              // Do: dvar / dscalar_var
              if (_sys.hasScalarVariable(jvar.name()))              // want to process only nl-variables (not aux ones)
                kernel->computeOffDiagJacobianScalar(jvar.number());
            }
          }
        }
      }
    }
  }
}
Пример #2
0
void
EigenSystem::addKernel(const std::string & kernel_name, const std::string & name, InputParameters parameters)
{
  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
  {
    // Set the parameters for thread ID and material data
    parameters.set<THREAD_ID>("_tid") = tid;
    parameters.set<MaterialData *>("_material_data") = _fe_problem._material_data[tid];

    // In the case of EigenKernels, we might need to add two to the system
    if (parameters.have_parameter<bool>("eigen"))
    {
      {
        // EigenKernel
        parameters.set<bool>("implicit") = true;
        EigenKernel *ekernel = static_cast<EigenKernel *>(_factory.create(kernel_name, name, parameters));
        mooseAssert(ekernel != NULL, "Not an EigenKernel object");
        if (parameters.get<bool>("eigen")) markEigenVariable(parameters.get<NonlinearVariableName>("variable"));
        // Extract the SubdomainIDs from the object (via BlockRestrictable class)
        std::set<SubdomainID> blk_ids = ekernel->blockIDs();
        _kernels[tid].addKernel(ekernel, blk_ids);
        _fe_problem._objects_by_name[tid][name].push_back(ekernel);
      }
      if (parameters.get<bool>("eigen"))
      {
        // EigenKernel_old
        parameters.set<bool>("implicit") = false;
        std::string old_name(name + "_old");

        EigenKernel *ekernel = static_cast<EigenKernel *>(_factory.create(kernel_name, old_name, parameters));
        _eigen_var_names.insert(parameters.get<NonlinearVariableName>("variable"));
        // Extract the SubdomainIDs from the object (via BlockRestrictable class)
        std::set<SubdomainID> blk_ids = ekernel->blockIDs();
        _kernels[tid].addKernel(ekernel, blk_ids);
        _fe_problem._objects_by_name[tid][old_name].push_back(ekernel);
      }
    }
    else // Standard nonlinear system kernel
    {
      // Create the kernel object via the factory
      KernelBase *kernel = static_cast<KernelBase *>(_factory.create(kernel_name, name, parameters));
      mooseAssert(kernel != NULL, "Not a Kernel object");
      // Extract the SubdomainIDs from the object (via BlockRestrictable class)
      std::set<SubdomainID> blk_ids = kernel->blockIDs();
      _kernels[tid].addKernel(kernel, blk_ids);
      _fe_problem._objects_by_name[tid][name].push_back(kernel);
    }
  }
}
Пример #3
0
void
ComputeJacobianBlockThread::operator() (const ConstElemRange & range, bool bypass_threading/*=false*/)
{
  ParallelUniqueId puid;
  _tid = bypass_threading ? 0 : puid.id;

  unsigned int subdomain = std::numeric_limits<unsigned int>::max();

  const DofMap & dof_map = _precond_system.get_dof_map();
  std::vector<unsigned int> dof_indices;

  ConstElemRange::const_iterator range_end = range.end();
  for (ConstElemRange::const_iterator el = range.begin() ; el != range_end; ++el)
  {
    const Elem* elem = *el;
    unsigned int cur_subdomain = elem->subdomain_id();

    dof_map.dof_indices(elem, dof_indices);
    if (dof_indices.size())
    {
      _fe_problem.prepare(elem, _ivar, _jvar, dof_indices, _tid);
      _fe_problem.reinitElem(elem, _tid);

      if (cur_subdomain != subdomain)
      {
        subdomain = cur_subdomain;
        _fe_problem.subdomainSetup(subdomain, _tid);
        _nl._kernels[_tid].updateActiveKernels(cur_subdomain);
      }

      _fe_problem.reinitMaterials(cur_subdomain, _tid);

      //Kernels
      std::vector<KernelBase *> kernels = _nl._kernels[_tid].active();
      for (std::vector<KernelBase *>::const_iterator it = kernels.begin(); it != kernels.end(); it++)
      {
        KernelBase * kernel = *it;
        if (kernel->variable().index() == _ivar)
        {
          kernel->subProblem().prepareShapes(_jvar, _tid);
          kernel->computeOffDiagJacobian(_jvar);
        }
      }

      _fe_problem.swapBackMaterials(_tid);

      for (unsigned int side = 0; side < elem->n_sides(); side++)
      {
        std::vector<BoundaryID> boundary_ids = _mesh.boundaryIDs(elem, side);

        if (boundary_ids.size() > 0)
        {
          for (std::vector<BoundaryID>::iterator it = boundary_ids.begin(); it != boundary_ids.end(); ++it)
          {
            BoundaryID bnd_id = *it;

            std::vector<IntegratedBC *> bcs = _nl._bcs[_tid].activeIntegrated(bnd_id);
            if (bcs.size() > 0)
            {
              _fe_problem.prepareFace(elem, _tid);
              _fe_problem.reinitElemFace(elem, side, bnd_id, _tid);
              _fe_problem.reinitMaterialsFace(elem->subdomain_id(), _tid);
              _fe_problem.reinitMaterialsBoundary(bnd_id, _tid);

              for (std::vector<IntegratedBC *>::iterator it = bcs.begin(); it != bcs.end(); ++it)
              {
                IntegratedBC * bc = *it;
                if (bc->variable().index() == _ivar)
                {
                  if (bc->shouldApply())
                  {
                    bc->subProblem().prepareFaceShapes(_jvar, _tid);
                    bc->computeJacobianBlock(_jvar);
                  }
                }
              }

              _fe_problem.swapBackMaterialsFace(_tid);
            }
          }
        }

        if (elem->neighbor(side) != NULL)
        {
          // on internal edge
          // Pointer to the neighbor we are currently working on.
          const Elem * neighbor = elem->neighbor(side);

          // Get the global id of the element and the neighbor
          const unsigned int elem_id = elem->id();
          const unsigned int neighbor_id = neighbor->id();

          if ((neighbor->active() && (neighbor->level() == elem->level()) && (elem_id < neighbor_id)) || (neighbor->level() < elem->level()))
          {
            std::vector<DGKernel *> dgks = _nl._dg_kernels[_tid].active();
            if (dgks.size() > 0)
            {
              _fe_problem.prepareFace(elem, _tid);
              _fe_problem.reinitNeighbor(elem, side, _tid);

              _fe_problem.reinitMaterialsFace(elem->subdomain_id(), _tid);
              _fe_problem.reinitMaterialsNeighbor(neighbor->subdomain_id(), _tid);

              for (std::vector<DGKernel *>::iterator it = dgks.begin(); it != dgks.end(); ++it)
              {
                DGKernel * dg = *it;
                if (dg->variable().index() == _ivar)
                {
                  dg->subProblem().prepareFaceShapes(_jvar, _tid);
                  dg->subProblem().prepareNeighborShapes(_jvar, _tid);
                  dg->computeOffDiagJacobian(_jvar);
                }
              }

              _fe_problem.swapBackMaterialsFace(_tid);
              _fe_problem.swapBackMaterialsNeighbor(_tid);

              std::vector<unsigned int> neighbor_dof_indices;
              dof_map.dof_indices(neighbor, neighbor_dof_indices);
              {
                Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
                _fe_problem.addJacobianNeighbor(_jacobian, _ivar, _jvar, dof_map, dof_indices, neighbor_dof_indices, _tid);
              }
            }
          }
        }
      }

      {
        Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
        _fe_problem.addJacobianBlock(_jacobian, _ivar, _jvar, dof_map, dof_indices, _tid);
      }
    }
  }
}