KisPaintDeviceSP TransformStrokeStrategy::getDeviceCache(KisPaintDeviceSP src) { QMutexLocker l(&m_devicesCacheMutex); KisPaintDeviceSP cache = m_devicesCacheHash.value(src.data()); if (!cache) { warnKrita << "WARNING: Transform Stroke: the device is absent in cache!"; } return cache; }
KisImageBuilder_Result CSVSaver::getLayer(CSVLayerRecord* layer, KisDocument* exportDoc, KisKeyframeSP keyframe, const QString &path, int frame, int idx) { //render to the temp layer KisImageWSP image = exportDoc->image(); KisPaintDeviceSP device = image->rootLayer()->firstChild()->projection(); layer->channel->fetchFrame(keyframe, device); QRect bounds = device->exactBounds(); if (bounds.isEmpty()) { layer->last = ""; //empty frame return KisImageBuilder_RESULT_OK; } layer->last = QString("frame%1-%2.png").arg(idx + 1,5,10,QChar('0')).arg(frame,5,10,QChar('0')); QString filename = path; filename.append(layer->last); //save to PNG KisSequentialConstIterator it(device, image->bounds()); const KoColorSpace* cs = device->colorSpace(); bool isThereAlpha = false; do { if (cs->opacityU8(it.oldRawData()) != OPACITY_OPAQUE_U8) { isThereAlpha = true; break; } } while (it.nextPixel()); if (!KisPNGConverter::isColorSpaceSupported(cs)) { device = new KisPaintDevice(*device.data()); KUndo2Command *cmd= device->convertTo(KoColorSpaceRegistry::instance()->rgb8()); delete cmd; } KisPNGOptions options; options.alpha = isThereAlpha; options.interlace = false; options.compression = 8; options.tryToSaveAsIndexed = false; options.transparencyFillColor = QColor(0,0,0); options.saveSRGBProfile = true; //TVPaint can use only sRGB options.forceSRGB = false; KisPNGConverter kpc(exportDoc); KisImageBuilder_Result result = kpc.buildFile(QUrl::fromLocalFile(filename), image->bounds(), image->xRes(), image->yRes(), device, image->beginAnnotations(), image->endAnnotations(), options, (KisMetaData::Store* )0 ); return result; }
void KisFilterWave::processImpl(KisPaintDeviceSP device, const QRect& applyRect, const KisFilterConfiguration* config, KoUpdater* progressUpdater ) const { Q_ASSERT(device.data() != 0); int cost = (applyRect.width() * applyRect.height()) / 100; if (cost == 0) cost = 1; int count = 0; QVariant value; int horizontalwavelength = (config && config->getProperty("horizontalwavelength", value)) ? value.toInt() : 50; int horizontalshift = (config && config->getProperty("horizontalshift", value)) ? value.toInt() : 50; int horizontalamplitude = (config && config->getProperty("horizontalamplitude", value)) ? value.toInt() : 4; int horizontalshape = (config && config->getProperty("horizontalshape", value)) ? value.toInt() : 0; int verticalwavelength = (config && config->getProperty("verticalwavelength", value)) ? value.toInt() : 50; int verticalshift = (config && config->getProperty("verticalshift", value)) ? value.toInt() : 50; int verticalamplitude = (config && config->getProperty("verticalamplitude", value)) ? value.toInt() : 4; int verticalshape = (config && config->getProperty("verticalshape", value)) ? value.toInt() : 0; KisSequentialIterator dstIt(device, applyRect); KisWaveCurve* verticalcurve; if (verticalshape == 1) verticalcurve = new KisTriangleWaveCurve(verticalamplitude, verticalwavelength, verticalshift); else verticalcurve = new KisSinusoidalWaveCurve(verticalamplitude, verticalwavelength, verticalshift); KisWaveCurve* horizontalcurve; if (horizontalshape == 1) horizontalcurve = new KisTriangleWaveCurve(horizontalamplitude, horizontalwavelength, horizontalshift); else horizontalcurve = new KisSinusoidalWaveCurve(horizontalamplitude, horizontalwavelength, horizontalshift); KisRandomSubAccessorSP srcRSA = device->createRandomSubAccessor(); do { double xv = horizontalcurve->valueAt(dstIt.y(), dstIt.x()); double yv = verticalcurve->valueAt(dstIt.x(), dstIt.y()); srcRSA->moveTo(QPointF(xv, yv)); srcRSA->sampledOldRawData(dstIt.rawData()); if (progressUpdater) progressUpdater->setProgress((++count) / cost); } while (dstIt.nextPixel()); delete horizontalcurve; delete verticalcurve; }
void checkReadWriteRoundTrip(KisPaintDeviceSP dev, const QRect &rc) { KisPaintDeviceSP deviceCopy = new KisPaintDevice(*dev.data()); QRect readRect(10, 10, 20, 20); int bufSize = rc.width() * rc.height() * dev->pixelSize(); QScopedPointer<quint8> buf1(new quint8[bufSize]); deviceCopy->readBytes(buf1.data(), rc); deviceCopy->clear(); QVERIFY(deviceCopy->extent().isEmpty()); QScopedPointer<quint8> buf2(new quint8[bufSize]); deviceCopy->writeBytes(buf1.data(), rc); deviceCopy->readBytes(buf2.data(), rc); QVERIFY(!memcmp(buf1.data(), buf2.data(), bufSize)); }
void TransformStrokeStrategy::putDeviceCache(KisPaintDeviceSP src, KisPaintDeviceSP cache) { QMutexLocker l(&m_devicesCacheMutex); m_devicesCacheHash.insert(src.data(), cache); }
bool TransformStrokeStrategy::haveDeviceInCache(KisPaintDeviceSP src) { QMutexLocker l(&m_devicesCacheMutex); return m_devicesCacheHash.contains(src.data()); }
void KisFilterFastColorTransfer::processImpl(KisPaintDeviceSP device, const QRect& applyRect, const KisFilterConfiguration* config, KoUpdater* progressUpdater) const { Q_ASSERT(device != 0); dbgPlugins << "Start transferring color"; // Convert ref and src to LAB const KoColorSpace* labCS = KoColorSpaceRegistry::instance()->lab16(); if (!labCS) { dbgPlugins << "The LAB colorspace is not available."; return; } dbgPlugins << "convert a copy of src to lab"; const KoColorSpace* oldCS = device->colorSpace(); KisPaintDeviceSP srcLAB = new KisPaintDevice(*device.data()); dbgPlugins << "srcLab : " << srcLAB->extent(); KUndo2Command* cmd = srcLAB->convertTo(labCS, KoColorConversionTransformation::internalRenderingIntent(), KoColorConversionTransformation::internalConversionFlags()); delete cmd; if (progressUpdater) { progressUpdater->setRange(0, 2 * applyRect.width() * applyRect.height()); } int count = 0; // Compute the means and sigmas of src dbgPlugins << "Compute the means and sigmas of src"; double meanL_src = 0., meanA_src = 0., meanB_src = 0.; double sigmaL_src = 0., sigmaA_src = 0., sigmaB_src = 0.; KisSequentialConstIterator srcIt(srcLAB, applyRect); do { const quint16* data = reinterpret_cast<const quint16*>(srcIt.oldRawData()); quint32 L = data[0]; quint32 A = data[1]; quint32 B = data[2]; meanL_src += L; meanA_src += A; meanB_src += B; sigmaL_src += L * L; sigmaA_src += A * A; sigmaB_src += B * B; if (progressUpdater) progressUpdater->setValue(++count); } while (srcIt.nextPixel() && !(progressUpdater && progressUpdater->interrupted())); double totalSize = 1. / (applyRect.width() * applyRect.height()); meanL_src *= totalSize; meanA_src *= totalSize; meanB_src *= totalSize; sigmaL_src *= totalSize; sigmaA_src *= totalSize; sigmaB_src *= totalSize; dbgPlugins << totalSize << "" << meanL_src << "" << meanA_src << "" << meanB_src << "" << sigmaL_src << "" << sigmaA_src << "" << sigmaB_src; double meanL_ref = config->getDouble("meanL"); double meanA_ref = config->getDouble("meanA"); double meanB_ref = config->getDouble("meanB"); double sigmaL_ref = config->getDouble("sigmaL"); double sigmaA_ref = config->getDouble("sigmaA"); double sigmaB_ref = config->getDouble("sigmaB"); // Transfer colors dbgPlugins << "Transfer colors"; { double coefL = sqrt((sigmaL_ref - meanL_ref * meanL_ref) / (sigmaL_src - meanL_src * meanL_src)); double coefA = sqrt((sigmaA_ref - meanA_ref * meanA_ref) / (sigmaA_src - meanA_src * meanA_src)); double coefB = sqrt((sigmaB_ref - meanB_ref * meanB_ref) / (sigmaB_src - meanB_src * meanB_src)); KisHLineConstIteratorSP srcLABIt = srcLAB->createHLineConstIteratorNG(applyRect.x(), applyRect.y(), applyRect.width()); KisHLineIteratorSP dstIt = device->createHLineIteratorNG(applyRect.x(), applyRect.y(), applyRect.width()); quint16 labPixel[4]; for (int y = 0; y < applyRect.height() && !(progressUpdater && progressUpdater->interrupted()); ++y) { do { const quint16* data = reinterpret_cast<const quint16*>(srcLABIt->oldRawData()); labPixel[0] = (quint16)CLAMP(((double)data[0] - meanL_src) * coefL + meanL_ref, 0., 65535.); labPixel[1] = (quint16)CLAMP(((double)data[1] - meanA_src) * coefA + meanA_ref, 0., 65535.); labPixel[2] = (quint16)CLAMP(((double)data[2] - meanB_src) * coefB + meanB_ref, 0., 65535.); labPixel[3] = data[3]; oldCS->fromLabA16(reinterpret_cast<const quint8*>(labPixel), dstIt->rawData(), 1); if (progressUpdater) progressUpdater->setValue(++count); srcLABIt->nextPixel(); } while(dstIt->nextPixel()); dstIt->nextRow(); srcLABIt->nextRow(); } } }