Пример #1
0
//
// LLVMDisasmInstruction() disassembles a single instruction using the
// disassembler context specified in the parameter DC.  The bytes of the
// instruction are specified in the parameter Bytes, and contains at least
// BytesSize number of bytes.  The instruction is at the address specified by
// the PC parameter.  If a valid instruction can be disassembled its string is
// returned indirectly in OutString which whos size is specified in the
// parameter OutStringSize.  This function returns the number of bytes in the
// instruction or zero if there was no valid instruction.  If this function
// returns zero the caller will have to pick how many bytes they want to step
// over by printing a .byte, .long etc. to continue.
//
size_t LLVMDisasmInstruction(LLVMDisasmContextRef DCR, uint8_t *Bytes,
                             uint64_t BytesSize, uint64_t PC, char *OutString,
                             size_t OutStringSize){
  LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR;
  // Wrap the pointer to the Bytes, BytesSize and PC in a MemoryObject.
  DisasmMemoryObject MemoryObject(Bytes, BytesSize, PC);

  uint64_t Size;
  MCInst Inst;
  const MCDisassembler *DisAsm = DC->getDisAsm();
  MCInstPrinter *IP = DC->getIP();
  MCDisassembler::DecodeStatus S;
  SmallVector<char, 64> InsnStr;
  raw_svector_ostream Annotations(InsnStr);
  S = DisAsm->getInstruction(Inst, Size, MemoryObject, PC,
                             /*REMOVE*/ nulls(), Annotations);
  switch (S) {
  case MCDisassembler::Fail:
  case MCDisassembler::SoftFail:
    // FIXME: Do something different for soft failure modes?
    return 0;

  case MCDisassembler::Success: {
    Annotations.flush();
    StringRef AnnotationsStr = Annotations.str();

    SmallVector<char, 64> InsnStr;
    raw_svector_ostream OS(InsnStr);
    formatted_raw_ostream FormattedOS(OS);
    IP->printInst(&Inst, FormattedOS, AnnotationsStr);

    if (DC->getOptions() & LLVMDisassembler_Option_PrintLatency)
      emitLatency(DC, Inst);

    emitComments(DC, FormattedOS);
    OS.flush();

    assert(OutStringSize != 0 && "Output buffer cannot be zero size");
    size_t OutputSize = std::min(OutStringSize-1, InsnStr.size());
    std::memcpy(OutString, InsnStr.data(), OutputSize);
    OutString[OutputSize] = '\0'; // Terminate string.

    return Size;
  }
  }
  llvm_unreachable("Invalid DecodeStatus!");
}
Пример #2
0
//
// LLVMDisasmInstruction() disassembles a single instruction using the
// disassembler context specified in the parameter DC.  The bytes of the
// instruction are specified in the parameter Bytes, and contains at least
// BytesSize number of bytes.  The instruction is at the address specified by
// the PC parameter.  If a valid instruction can be disassembled its string is
// returned indirectly in OutString which whos size is specified in the
// parameter OutStringSize.  This function returns the number of bytes in the
// instruction or zero if there was no valid instruction.  If this function
// returns zero the caller will have to pick how many bytes they want to step
// over by printing a .byte, .long etc. to continue.
//
size_t LLVMDisasmInstruction(LLVMDisasmContextRef DCR, uint8_t *Bytes,
                             uint64_t BytesSize, uint64_t PC, char *OutString,
                             size_t OutStringSize){
  LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR;
  // Wrap the pointer to the Bytes, BytesSize and PC in a MemoryObject.
  DisasmMemoryObject MemoryObject(Bytes, BytesSize, PC);

  uint64_t Size;
  MCInst Inst;
  const MCDisassembler *DisAsm = DC->getDisAsm();
  MCInstPrinter *IP = DC->getIP();
  MCDisassembler::DecodeStatus S;
  S = DisAsm->getInstruction(Inst, Size, MemoryObject, PC,
                             /*REMOVE*/ nulls(), DC->CommentStream);
  switch (S) {
  case MCDisassembler::Fail:
  case MCDisassembler::SoftFail:
    // FIXME: Do something different for soft failure modes?
    return 0;

  case MCDisassembler::Success: {
    DC->CommentStream.flush();
    StringRef Comments = DC->CommentsToEmit.str();

    SmallVector<char, 64> InsnStr;
    raw_svector_ostream OS(InsnStr);
    IP->printInst(&Inst, OS, Comments);
    OS.flush();

    // Tell the comment stream that the vector changed underneath it.
    DC->CommentsToEmit.clear();
    DC->CommentStream.resync();

    assert(OutStringSize != 0 && "Output buffer cannot be zero size");
    size_t OutputSize = std::min(OutStringSize-1, InsnStr.size());
    std::memcpy(OutString, InsnStr.data(), OutputSize);
    OutString[OutputSize] = '\0'; // Terminate string.

    return Size;
  }
  }
  llvm_unreachable("Invalid DecodeStatus!");
}