MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { StringRef SectionName = GO->getSection(); // Infer section flags from the section name if we can. Kind = getELFKindForNamedSection(SectionName, Kind); StringRef Group = ""; unsigned Flags = getELFSectionFlags(Kind); if (const Comdat *C = getELFComdat(GO)) { Group = C->getName(); Flags |= ELF::SHF_GROUP; } // A section can have at most one associated section. Put each global with // MD_associated in a unique section. unsigned UniqueID = MCContext::GenericSectionID; const MCSymbolELF *AssociatedSymbol = getAssociatedSymbol(GO, TM); if (AssociatedSymbol) { UniqueID = NextUniqueID++; Flags |= ELF::SHF_LINK_ORDER; } MCSectionELF *Section = getContext().getELFSection( SectionName, getELFSectionType(SectionName, Kind), Flags, /*EntrySize=*/0, Group, UniqueID, AssociatedSymbol); // Make sure that we did not get some other section with incompatible sh_link. // This should not be possible due to UniqueID code above. assert(Section->getAssociatedSymbol() == AssociatedSymbol); return Section; }
MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { unsigned Flags = getELFSectionFlags(Kind); // If we have -ffunction-section or -fdata-section then we should emit the // global value to a uniqued section specifically for it. bool EmitUniqueSection = false; if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) { if (Kind.isText()) EmitUniqueSection = TM.getFunctionSections(); else EmitUniqueSection = TM.getDataSections(); } EmitUniqueSection |= GO->hasComdat(); const MCSymbolELF *AssociatedSymbol = getAssociatedSymbol(GO, TM); if (AssociatedSymbol) { EmitUniqueSection = true; Flags |= ELF::SHF_LINK_ORDER; } MCSectionELF *Section = selectELFSectionForGlobal( getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, Flags, &NextUniqueID, AssociatedSymbol); assert(Section->getAssociatedSymbol() == AssociatedSymbol); return Section; }
MCSectionELF * ELFObjectWriter::createRelocationSection(MCContext &Ctx, const MCSectionELF &Sec) { if (Relocations[&Sec].empty()) return nullptr; const StringRef SectionName = Sec.getSectionName(); std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; RelaSectionName += SectionName; unsigned EntrySize; if (hasRelocationAddend()) EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); else EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); unsigned Flags = 0; if (Sec.getFlags() & ELF::SHF_GROUP) Flags = ELF::SHF_GROUP; MCSectionELF *RelaSection = Ctx.createELFRelSection( RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize, Sec.getGroup(), &Sec); RelaSection->setAlignment(is64Bit() ? 8 : 4); return RelaSection; }
MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { StringRef SectionName = GO->getSection(); // Check if '#pragma clang section' name is applicable. // Note that pragma directive overrides -ffunction-section, -fdata-section // and so section name is exactly as user specified and not uniqued. const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO); if (GV && GV->hasImplicitSection()) { auto Attrs = GV->getAttributes(); if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) { SectionName = Attrs.getAttribute("bss-section").getValueAsString(); } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) { SectionName = Attrs.getAttribute("rodata-section").getValueAsString(); } else if (Attrs.hasAttribute("data-section") && Kind.isData()) { SectionName = Attrs.getAttribute("data-section").getValueAsString(); } } const Function *F = dyn_cast<Function>(GO); if (F && F->hasFnAttribute("implicit-section-name")) { SectionName = F->getFnAttribute("implicit-section-name").getValueAsString(); } // Infer section flags from the section name if we can. Kind = getELFKindForNamedSection(SectionName, Kind); StringRef Group = ""; unsigned Flags = getELFSectionFlags(Kind); if (const Comdat *C = getELFComdat(GO)) { Group = C->getName(); Flags |= ELF::SHF_GROUP; } // A section can have at most one associated section. Put each global with // MD_associated in a unique section. unsigned UniqueID = MCContext::GenericSectionID; const MCSymbolELF *AssociatedSymbol = getAssociatedSymbol(GO, TM); if (AssociatedSymbol) { UniqueID = NextUniqueID++; Flags |= ELF::SHF_LINK_ORDER; } MCSectionELF *Section = getContext().getELFSection( SectionName, getELFSectionType(SectionName, Kind), Flags, /*EntrySize=*/0, Group, UniqueID, AssociatedSymbol); // Make sure that we did not get some other section with incompatible sh_link. // This should not be possible due to UniqueID code above. assert(Section->getAssociatedSymbol() == AssociatedSymbol); return Section; }
void MipsRegInfoRecord::EmitMipsOptionRecord() { MCAssembler &MCA = Streamer->getAssembler(); MipsTargetStreamer *MTS = static_cast<MipsTargetStreamer *>(Streamer->getTargetStreamer()); Streamer->PushSection(); // We need to distinguish between N64 and the rest because at the moment // we don't emit .Mips.options for other ELFs other than N64. // Since .reginfo has the same information as .Mips.options (ODK_REGINFO), // we can use the same abstraction (MipsRegInfoRecord class) to handle both. if (MTS->getABI().IsN64()) { // The EntrySize value of 1 seems strange since the records are neither // 1-byte long nor fixed length but it matches the value GAS emits. MCSectionELF *Sec = Context.getELFSection(".MIPS.options", ELF::SHT_MIPS_OPTIONS, ELF::SHF_ALLOC | ELF::SHF_MIPS_NOSTRIP, 1, ""); MCA.registerSection(*Sec); Sec->setAlignment(8); Streamer->SwitchSection(Sec); Streamer->EmitIntValue(ELF::ODK_REGINFO, 1); // kind Streamer->EmitIntValue(40, 1); // size Streamer->EmitIntValue(0, 2); // section Streamer->EmitIntValue(0, 4); // info Streamer->EmitIntValue(ri_gprmask, 4); Streamer->EmitIntValue(0, 4); // pad Streamer->EmitIntValue(ri_cprmask[0], 4); Streamer->EmitIntValue(ri_cprmask[1], 4); Streamer->EmitIntValue(ri_cprmask[2], 4); Streamer->EmitIntValue(ri_cprmask[3], 4); Streamer->EmitIntValue(ri_gp_value, 8); } else { MCSectionELF *Sec = Context.getELFSection(".reginfo", ELF::SHT_MIPS_REGINFO, ELF::SHF_ALLOC, 24, ""); MCA.registerSection(*Sec); Sec->setAlignment(MTS->getABI().IsN32() ? 8 : 4); Streamer->SwitchSection(Sec); Streamer->EmitIntValue(ri_gprmask, 4); Streamer->EmitIntValue(ri_cprmask[0], 4); Streamer->EmitIntValue(ri_cprmask[1], 4); Streamer->EmitIntValue(ri_cprmask[2], 4); Streamer->EmitIntValue(ri_cprmask[3], 4); assert((ri_gp_value & 0xffffffff) == ri_gp_value); Streamer->EmitIntValue(ri_gp_value, 4); } Streamer->PopSection(); }
/// HasCommonSymbols - True if this section holds common symbols, this is /// indicated on the ELF object file by a symbol with SHN_COMMON section /// header index. static bool HasCommonSymbols(const MCSectionELF &S) { // FIXME: this is wrong, a common symbol can be in .data for example. if (StringRef(S.getSectionName()).startswith(".gnu.linkonce.")) return true; return false; }
void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, const MCSectionELF &Section) { uint64_t sh_link = 0; uint64_t sh_info = 0; switch(Section.getType()) { default: // Nothing to do. break; case ELF::SHT_DYNAMIC: llvm_unreachable("SHT_DYNAMIC in a relocatable object"); case ELF::SHT_REL: case ELF::SHT_RELA: { sh_link = SymbolTableIndex; assert(sh_link && ".symtab not found"); const MCSection *InfoSection = Section.getAssociatedSection(); sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); break; } case ELF::SHT_SYMTAB: case ELF::SHT_DYNSYM: sh_link = StringTableIndex; sh_info = LastLocalSymbolIndex; break; case ELF::SHT_SYMTAB_SHNDX: sh_link = SymbolTableIndex; break; case ELF::SHT_GROUP: sh_link = SymbolTableIndex; sh_info = GroupSymbolIndex; break; } if (Section.getFlags() & ELF::SHF_LINK_ORDER) { const MCSymbol *Sym = Section.getAssociatedSymbol(); const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); sh_link = SectionIndexMap.lookup(Sec); } WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), Section.getType(), Section.getFlags(), 0, Offset, Size, sh_link, sh_info, Section.getAlignment(), Section.getEntrySize()); }
void ELFObjectWriter::computeSymbolTable( MCAssembler &Asm, const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, SectionOffsetsTy &SectionOffsets) { MCContext &Ctx = Asm.getContext(); SymbolTableWriter Writer(*this, is64Bit()); // Symbol table unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; MCSectionELF *SymtabSection = Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); SymtabSection->setAlignment(is64Bit() ? 8 : 4); SymbolTableIndex = addToSectionTable(SymtabSection); align(SymtabSection->getAlignment()); uint64_t SecStart = getStream().tell(); // The first entry is the undefined symbol entry. Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); std::vector<ELFSymbolData> LocalSymbolData; std::vector<ELFSymbolData> ExternalSymbolData; // Add the data for the symbols. bool HasLargeSectionIndex = false; for (const MCSymbol &S : Asm.symbols()) { const auto &Symbol = cast<MCSymbolELF>(S); bool Used = Symbol.isUsedInReloc(); bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); bool isSignature = Symbol.isSignature(); if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, Renames.count(&Symbol))) continue; if (Symbol.isTemporary() && Symbol.isUndefined()) { Ctx.reportError(SMLoc(), "Undefined temporary symbol"); continue; } ELFSymbolData MSD; MSD.Symbol = cast<MCSymbolELF>(&Symbol); bool Local = Symbol.getBinding() == ELF::STB_LOCAL; assert(Local || !Symbol.isTemporary()); if (Symbol.isAbsolute()) { MSD.SectionIndex = ELF::SHN_ABS; } else if (Symbol.isCommon()) { assert(!Local); MSD.SectionIndex = ELF::SHN_COMMON; } else if (Symbol.isUndefined()) { if (isSignature && !Used) { MSD.SectionIndex = RevGroupMap.lookup(&Symbol); if (MSD.SectionIndex >= ELF::SHN_LORESERVE) HasLargeSectionIndex = true; } else { MSD.SectionIndex = ELF::SHN_UNDEF; } } else { const MCSectionELF &Section = static_cast<const MCSectionELF &>(Symbol.getSection()); MSD.SectionIndex = SectionIndexMap.lookup(&Section); assert(MSD.SectionIndex && "Invalid section index!"); if (MSD.SectionIndex >= ELF::SHN_LORESERVE) HasLargeSectionIndex = true; } // The @@@ in symbol version is replaced with @ in undefined symbols and @@ // in defined ones. // // FIXME: All name handling should be done before we get to the writer, // including dealing with GNU-style version suffixes. Fixing this isn't // trivial. // // We thus have to be careful to not perform the symbol version replacement // blindly: // // The ELF format is used on Windows by the MCJIT engine. Thus, on // Windows, the ELFObjectWriter can encounter symbols mangled using the MS // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC // C++ name mangling can legally have "@@@" as a sub-string. In that case, // the EFLObjectWriter should not interpret the "@@@" sub-string as // specifying GNU-style symbol versioning. The ELFObjectWriter therefore // checks for the MSVC C++ name mangling prefix which is either "?", "@?", // "__imp_?" or "__imp_@?". // // It would have been interesting to perform the MS mangling prefix check // only when the target triple is of the form *-pc-windows-elf. But, it // seems that this information is not easily accessible from the // ELFObjectWriter. StringRef Name = Symbol.getName(); SmallString<32> Buf; if (!Name.startswith("?") && !Name.startswith("@?") && !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) { // This symbol isn't following the MSVC C++ name mangling convention. We // can thus safely interpret the @@@ in symbol names as specifying symbol // versioning. size_t Pos = Name.find("@@@"); if (Pos != StringRef::npos) { Buf += Name.substr(0, Pos); unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1; Buf += Name.substr(Pos + Skip); Name = VersionSymSaver.save(Buf.c_str()); } } // Sections have their own string table if (Symbol.getType() != ELF::STT_SECTION) { MSD.Name = Name; StrTabBuilder.add(Name); } if (Local) LocalSymbolData.push_back(MSD); else ExternalSymbolData.push_back(MSD); } // This holds the .symtab_shndx section index. unsigned SymtabShndxSectionIndex = 0; if (HasLargeSectionIndex) { MCSectionELF *SymtabShndxSection = Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); SymtabShndxSection->setAlignment(4); } ArrayRef<std::string> FileNames = Asm.getFileNames(); for (const std::string &Name : FileNames) StrTabBuilder.add(Name); StrTabBuilder.finalize(); // File symbols are emitted first and handled separately from normal symbols, // i.e. a non-STT_FILE symbol with the same name may appear. for (const std::string &Name : FileNames) Writer.writeSymbol(StrTabBuilder.getOffset(Name), ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, ELF::SHN_ABS, true); // Symbols are required to be in lexicographic order. array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); // Set the symbol indices. Local symbols must come before all other // symbols with non-local bindings. unsigned Index = FileNames.size() + 1; for (ELFSymbolData &MSD : LocalSymbolData) { unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION ? 0 : StrTabBuilder.getOffset(MSD.Name); MSD.Symbol->setIndex(Index++); writeSymbol(Writer, StringIndex, MSD, Layout); } // Write the symbol table entries. LastLocalSymbolIndex = Index; for (ELFSymbolData &MSD : ExternalSymbolData) { unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); MSD.Symbol->setIndex(Index++); writeSymbol(Writer, StringIndex, MSD, Layout); assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); } uint64_t SecEnd = getStream().tell(); SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); if (ShndxIndexes.empty()) { assert(SymtabShndxSectionIndex == 0); return; } assert(SymtabShndxSectionIndex != 0); SecStart = getStream().tell(); const MCSectionELF *SymtabShndxSection = SectionTable[SymtabShndxSectionIndex - 1]; for (uint32_t Index : ShndxIndexes) write(Index); SecEnd = getStream().tell(); SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); }
void ELFObjectWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { MCContext &Ctx = Asm.getContext(); MCSectionELF *StrtabSection = Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); StringTableIndex = addToSectionTable(StrtabSection); RevGroupMapTy RevGroupMap; SectionIndexMapTy SectionIndexMap; std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; // Write out the ELF header ... writeHeader(Asm); // ... then the sections ... SectionOffsetsTy SectionOffsets; std::vector<MCSectionELF *> Groups; std::vector<MCSectionELF *> Relocations; for (MCSection &Sec : Asm) { MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); align(Section.getAlignment()); // Remember the offset into the file for this section. uint64_t SecStart = getStream().tell(); const MCSymbolELF *SignatureSymbol = Section.getGroup(); writeSectionData(Asm, Section, Layout); uint64_t SecEnd = getStream().tell(); SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); MCSectionELF *RelSection = createRelocationSection(Ctx, Section); if (SignatureSymbol) { Asm.registerSymbol(*SignatureSymbol); unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; if (!GroupIdx) { MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); GroupIdx = addToSectionTable(Group); Group->setAlignment(4); Groups.push_back(Group); } std::vector<const MCSectionELF *> &Members = GroupMembers[SignatureSymbol]; Members.push_back(&Section); if (RelSection) Members.push_back(RelSection); } SectionIndexMap[&Section] = addToSectionTable(&Section); if (RelSection) { SectionIndexMap[RelSection] = addToSectionTable(RelSection); Relocations.push_back(RelSection); } } for (MCSectionELF *Group : Groups) { align(Group->getAlignment()); // Remember the offset into the file for this section. uint64_t SecStart = getStream().tell(); const MCSymbol *SignatureSymbol = Group->getGroup(); assert(SignatureSymbol); write(uint32_t(ELF::GRP_COMDAT)); for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { uint32_t SecIndex = SectionIndexMap.lookup(Member); write(SecIndex); } uint64_t SecEnd = getStream().tell(); SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); } // Compute symbol table information. computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets); for (MCSectionELF *RelSection : Relocations) { align(RelSection->getAlignment()); // Remember the offset into the file for this section. uint64_t SecStart = getStream().tell(); writeRelocations(Asm, cast<MCSectionELF>(*RelSection->getAssociatedSection())); uint64_t SecEnd = getStream().tell(); SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); } { uint64_t SecStart = getStream().tell(); const MCSectionELF *Sec = createStringTable(Ctx); uint64_t SecEnd = getStream().tell(); SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); } uint64_t NaturalAlignment = is64Bit() ? 8 : 4; align(NaturalAlignment); const uint64_t SectionHeaderOffset = getStream().tell(); // ... then the section header table ... writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF : SectionTable.size() + 1; if (sys::IsLittleEndianHost != IsLittleEndian) sys::swapByteOrder(NumSections); unsigned NumSectionsOffset; if (is64Bit()) { uint64_t Val = SectionHeaderOffset; if (sys::IsLittleEndianHost != IsLittleEndian) sys::swapByteOrder(Val); getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), offsetof(ELF::Elf64_Ehdr, e_shoff)); NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); } else { uint32_t Val = SectionHeaderOffset; if (sys::IsLittleEndianHost != IsLittleEndian) sys::swapByteOrder(Val); getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), offsetof(ELF::Elf32_Ehdr, e_shoff)); NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); } getStream().pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), NumSectionsOffset); }