StringRef MachOObjectFile::getFileFormatName() const { if (!MachOObj->is64Bit()) { switch (MachOObj->getHeader().CPUType) { case 0x00000007: return "MACHO32-i386"; case 0x01000007: return "MACHO32-x86-64"; case 0x0000000c: return "MACHO32-arm"; case 0x00000012: return "MACHO32-ppc"; case 0x01000012: return "MACHO32-ppc64"; } } switch (MachOObj->getHeader().CPUType) { case 0x00000007: return "MACHO64-i386"; case 0x01000007: return "MACHO64-x86-64"; case 0x0000000c: return "MACHO64-arm"; case 0x00000012: return "MACHO64-ppc"; case 0x01000012: return "MACHO64-ppc64"; default: return "MACHO64-unknown"; } }
void MachOObjectFile::moveToNextSymbol(DataRefImpl &DRI) const { uint32_t LoadCommandCount = MachOObj->getHeader().NumLoadCommands; while (DRI.d.a < LoadCommandCount) { LoadCommandInfo LCI = MachOObj->getLoadCommandInfo(DRI.d.a); if (LCI.Command.Type == macho::LCT_Symtab) { InMemoryStruct<macho::SymtabLoadCommand> SymtabLoadCmd; MachOObj->ReadSymtabLoadCommand(LCI, SymtabLoadCmd); if (DRI.d.b < SymtabLoadCmd->NumSymbolTableEntries) return; } DRI.d.a++; DRI.d.b = 0; } }
unsigned MachOObjectFile::getArch() const { switch (MachOObj->getHeader().CPUType) { case 0x00000007: return Triple::x86; case 0x01000007: return Triple::x86_64; case 0x0000000c: return Triple::arm; case 0x00000012: return Triple::ppc; case 0x01000012: return Triple::ppc64; default: return Triple::UnknownArch; } }
void MachOObjectFile::moveToNextSection(DataRefImpl &DRI) const { uint32_t LoadCommandCount = MachOObj->getHeader().NumLoadCommands; while (DRI.d.a < LoadCommandCount) { LoadCommandInfo LCI = MachOObj->getLoadCommandInfo(DRI.d.a); if (LCI.Command.Type == macho::LCT_Segment) { InMemoryStruct<macho::SegmentLoadCommand> SegmentLoadCmd; MachOObj->ReadSegmentLoadCommand(LCI, SegmentLoadCmd); if (DRI.d.b < SegmentLoadCmd->NumSections) return; } else if (LCI.Command.Type == macho::LCT_Segment64) { InMemoryStruct<macho::Segment64LoadCommand> Segment64LoadCmd; MachOObj->ReadSegment64LoadCommand(LCI, Segment64LoadCmd); if (DRI.d.b < Segment64LoadCmd->NumSections) return; } DRI.d.a++; DRI.d.b = 0; } }
void llvm::DisassembleInputMachO(StringRef Filename) { OwningPtr<MemoryBuffer> Buff; if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) { errs() << "llvm-objdump: " << Filename << ": " << ec.message() << "\n"; return; } OwningPtr<MachOObjectFile> MachOOF(static_cast<MachOObjectFile*>( ObjectFile::createMachOObjectFile(Buff.take()))); MachOObject *MachOObj = MachOOF->getObject(); const Target *TheTarget = GetTarget(MachOObj); if (!TheTarget) { // GetTarget prints out stuff. return; } OwningPtr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo()); OwningPtr<MCInstrAnalysis> InstrAnalysis(TheTarget->createMCInstrAnalysis(InstrInfo.get())); // Set up disassembler. OwningPtr<const MCAsmInfo> AsmInfo(TheTarget->createMCAsmInfo(TripleName)); OwningPtr<const MCSubtargetInfo> STI(TheTarget->createMCSubtargetInfo(TripleName, "", "")); OwningPtr<const MCDisassembler> DisAsm(TheTarget->createMCDisassembler(*STI)); OwningPtr<const MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName)); int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); OwningPtr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI)); if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) { errs() << "error: couldn't initialize disassembler for target " << TripleName << '\n'; return; } outs() << '\n' << Filename << ":\n\n"; const macho::Header &Header = MachOObj->getHeader(); const MachOObject::LoadCommandInfo *SymtabLCI = 0; // First, find the symbol table segment. for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { const MachOObject::LoadCommandInfo &LCI = MachOObj->getLoadCommandInfo(i); if (LCI.Command.Type == macho::LCT_Symtab) { SymtabLCI = &LCI; break; } } // Read and register the symbol table data. InMemoryStruct<macho::SymtabLoadCommand> SymtabLC; if (SymtabLCI) { MachOObj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); MachOObj->RegisterStringTable(*SymtabLC); } std::vector<SectionRef> Sections; std::vector<SymbolRef> Symbols; SmallVector<uint64_t, 8> FoundFns; getSectionsAndSymbols(Header, MachOOF.get(), &SymtabLC, Sections, Symbols, FoundFns); // Make a copy of the unsorted symbol list. FIXME: duplication std::vector<SymbolRef> UnsortedSymbols(Symbols); // Sort the symbols by address, just in case they didn't come in that way. std::sort(Symbols.begin(), Symbols.end(), SymbolSorter()); #ifndef NDEBUG raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); #else raw_ostream &DebugOut = nulls(); #endif StringRef DebugAbbrevSection, DebugInfoSection, DebugArangesSection, DebugLineSection, DebugStrSection; OwningPtr<DIContext> diContext; OwningPtr<MachOObjectFile> DSYMObj; MachOObject *DbgInfoObj = MachOObj; // Try to find debug info and set up the DIContext for it. if (UseDbg) { ArrayRef<SectionRef> DebugSections = Sections; std::vector<SectionRef> DSYMSections; // A separate DSym file path was specified, parse it as a macho file, // get the sections and supply it to the section name parsing machinery. if (!DSYMFile.empty()) { OwningPtr<MemoryBuffer> Buf; if (error_code ec = MemoryBuffer::getFileOrSTDIN(DSYMFile.c_str(), Buf)) { errs() << "llvm-objdump: " << Filename << ": " << ec.message() << '\n'; return; } DSYMObj.reset(static_cast<MachOObjectFile*>( ObjectFile::createMachOObjectFile(Buf.take()))); const macho::Header &Header = DSYMObj->getObject()->getHeader(); std::vector<SymbolRef> Symbols; SmallVector<uint64_t, 8> FoundFns; getSectionsAndSymbols(Header, DSYMObj.get(), 0, DSYMSections, Symbols, FoundFns); DebugSections = DSYMSections; DbgInfoObj = DSYMObj.get()->getObject(); } // Find the named debug info sections. for (unsigned SectIdx = 0; SectIdx != DebugSections.size(); SectIdx++) { StringRef SectName; if (!DebugSections[SectIdx].getName(SectName)) { if (SectName.equals("__DWARF,__debug_abbrev")) DebugSections[SectIdx].getContents(DebugAbbrevSection); else if (SectName.equals("__DWARF,__debug_info")) DebugSections[SectIdx].getContents(DebugInfoSection); else if (SectName.equals("__DWARF,__debug_aranges")) DebugSections[SectIdx].getContents(DebugArangesSection); else if (SectName.equals("__DWARF,__debug_line")) DebugSections[SectIdx].getContents(DebugLineSection); else if (SectName.equals("__DWARF,__debug_str")) DebugSections[SectIdx].getContents(DebugStrSection); } } // Setup the DIContext. diContext.reset(DIContext::getDWARFContext(DbgInfoObj->isLittleEndian(), DebugInfoSection, DebugAbbrevSection, DebugArangesSection, DebugLineSection, DebugStrSection)); } FunctionMapTy FunctionMap; FunctionListTy Functions; for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) { StringRef SectName; if (Sections[SectIdx].getName(SectName) || SectName.compare("__TEXT,__text")) continue; // Skip non-text sections // Insert the functions from the function starts segment into our map. uint64_t VMAddr; Sections[SectIdx].getAddress(VMAddr); for (unsigned i = 0, e = FoundFns.size(); i != e; ++i) { StringRef SectBegin; Sections[SectIdx].getContents(SectBegin); uint64_t Offset = (uint64_t)SectBegin.data(); FunctionMap.insert(std::make_pair(VMAddr + FoundFns[i]-Offset, (MCFunction*)0)); } StringRef Bytes; Sections[SectIdx].getContents(Bytes); StringRefMemoryObject memoryObject(Bytes); bool symbolTableWorked = false; // Parse relocations. std::vector<std::pair<uint64_t, SymbolRef> > Relocs; error_code ec; for (relocation_iterator RI = Sections[SectIdx].begin_relocations(), RE = Sections[SectIdx].end_relocations(); RI != RE; RI.increment(ec)) { uint64_t RelocOffset, SectionAddress; RI->getAddress(RelocOffset); Sections[SectIdx].getAddress(SectionAddress); RelocOffset -= SectionAddress; SymbolRef RelocSym; RI->getSymbol(RelocSym); Relocs.push_back(std::make_pair(RelocOffset, RelocSym)); } array_pod_sort(Relocs.begin(), Relocs.end()); // Disassemble symbol by symbol. for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) { StringRef SymName; Symbols[SymIdx].getName(SymName); SymbolRef::Type ST; Symbols[SymIdx].getType(ST); if (ST != SymbolRef::ST_Function) continue; // Make sure the symbol is defined in this section. bool containsSym = false; Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym); if (!containsSym) continue; // Start at the address of the symbol relative to the section's address. uint64_t SectionAddress = 0; uint64_t Start = 0; Sections[SectIdx].getAddress(SectionAddress); Symbols[SymIdx].getAddress(Start); Start -= SectionAddress; // Stop disassembling either at the beginning of the next symbol or at // the end of the section. bool containsNextSym = false; uint64_t NextSym = 0; uint64_t NextSymIdx = SymIdx+1; while (Symbols.size() > NextSymIdx) { SymbolRef::Type NextSymType; Symbols[NextSymIdx].getType(NextSymType); if (NextSymType == SymbolRef::ST_Function) { Sections[SectIdx].containsSymbol(Symbols[NextSymIdx], containsNextSym); Symbols[NextSymIdx].getAddress(NextSym); NextSym -= SectionAddress; break; } ++NextSymIdx; } uint64_t SectSize; Sections[SectIdx].getSize(SectSize); uint64_t End = containsNextSym ? NextSym : SectSize; uint64_t Size; symbolTableWorked = true; if (!CFG) { // Normal disassembly, print addresses, bytes and mnemonic form. StringRef SymName; Symbols[SymIdx].getName(SymName); outs() << SymName << ":\n"; DILineInfo lastLine; for (uint64_t Index = Start; Index < End; Index += Size) { MCInst Inst; if (DisAsm->getInstruction(Inst, Size, memoryObject, Index, DebugOut, nulls())) { uint64_t SectAddress = 0; Sections[SectIdx].getAddress(SectAddress); outs() << format("%8" PRIx64 ":\t", SectAddress + Index); DumpBytes(StringRef(Bytes.data() + Index, Size)); IP->printInst(&Inst, outs(), ""); // Print debug info. if (diContext) { DILineInfo dli = diContext->getLineInfoForAddress(SectAddress + Index); // Print valid line info if it changed. if (dli != lastLine && dli.getLine() != 0) outs() << "\t## " << dli.getFileName() << ':' << dli.getLine() << ':' << dli.getColumn(); lastLine = dli; } outs() << "\n"; } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (Size == 0) Size = 1; // skip illegible bytes } } } else { // Create CFG and use it for disassembly. StringRef SymName; Symbols[SymIdx].getName(SymName); createMCFunctionAndSaveCalls( SymName, DisAsm.get(), memoryObject, Start, End, InstrAnalysis.get(), Start, DebugOut, FunctionMap, Functions); } } if (!CFG && !symbolTableWorked) { // Reading the symbol table didn't work, disassemble the whole section. uint64_t SectAddress; Sections[SectIdx].getAddress(SectAddress); uint64_t SectSize; Sections[SectIdx].getSize(SectSize); uint64_t InstSize; for (uint64_t Index = 0; Index < SectSize; Index += InstSize) { MCInst Inst; if (DisAsm->getInstruction(Inst, InstSize, memoryObject, Index, DebugOut, nulls())) { outs() << format("%8" PRIx64 ":\t", SectAddress + Index); DumpBytes(StringRef(Bytes.data() + Index, InstSize)); IP->printInst(&Inst, outs(), ""); outs() << "\n"; } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (InstSize == 0) InstSize = 1; // skip illegible bytes } } } if (CFG) { if (!symbolTableWorked) { // Reading the symbol table didn't work, create a big __TEXT symbol. uint64_t SectSize = 0, SectAddress = 0; Sections[SectIdx].getSize(SectSize); Sections[SectIdx].getAddress(SectAddress); createMCFunctionAndSaveCalls("__TEXT", DisAsm.get(), memoryObject, 0, SectSize, InstrAnalysis.get(), SectAddress, DebugOut, FunctionMap, Functions); } for (std::map<uint64_t, MCFunction*>::iterator mi = FunctionMap.begin(), me = FunctionMap.end(); mi != me; ++mi) if (mi->second == 0) { // Create functions for the remaining callees we have gathered, // but we didn't find a name for them. uint64_t SectSize = 0; Sections[SectIdx].getSize(SectSize); SmallVector<uint64_t, 16> Calls; MCFunction f = MCFunction::createFunctionFromMC("unknown", DisAsm.get(), memoryObject, mi->first, SectSize, InstrAnalysis.get(), DebugOut, Calls); Functions.push_back(f); mi->second = &Functions.back(); for (unsigned i = 0, e = Calls.size(); i != e; ++i) { std::pair<uint64_t, MCFunction*> p(Calls[i], (MCFunction*)0); if (FunctionMap.insert(p).second) mi = FunctionMap.begin(); } } DenseSet<uint64_t> PrintedBlocks; for (unsigned ffi = 0, ffe = Functions.size(); ffi != ffe; ++ffi) { MCFunction &f = Functions[ffi]; for (MCFunction::iterator fi = f.begin(), fe = f.end(); fi != fe; ++fi){ if (!PrintedBlocks.insert(fi->first).second) continue; // We already printed this block. // We assume a block has predecessors when it's the first block after // a symbol. bool hasPreds = FunctionMap.find(fi->first) != FunctionMap.end(); // See if this block has predecessors. // FIXME: Slow. for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe; ++pi) if (pi->second.contains(fi->first)) { hasPreds = true; break; } uint64_t SectSize = 0, SectAddress; Sections[SectIdx].getSize(SectSize); Sections[SectIdx].getAddress(SectAddress); // No predecessors, this is a data block. Print as .byte directives. if (!hasPreds) { uint64_t End = llvm::next(fi) == fe ? SectSize : llvm::next(fi)->first; outs() << "# " << End-fi->first << " bytes of data:\n"; for (unsigned pos = fi->first; pos != End; ++pos) { outs() << format("%8x:\t", SectAddress + pos); DumpBytes(StringRef(Bytes.data() + pos, 1)); outs() << format("\t.byte 0x%02x\n", (uint8_t)Bytes[pos]); } continue; } if (fi->second.contains(fi->first)) // Print a header for simple loops outs() << "# Loop begin:\n"; DILineInfo lastLine; // Walk over the instructions and print them. for (unsigned ii = 0, ie = fi->second.getInsts().size(); ii != ie; ++ii) { const MCDecodedInst &Inst = fi->second.getInsts()[ii]; // If there's a symbol at this address, print its name. if (FunctionMap.find(SectAddress + Inst.Address) != FunctionMap.end()) outs() << FunctionMap[SectAddress + Inst.Address]-> getName() << ":\n"; outs() << format("%8" PRIx64 ":\t", SectAddress + Inst.Address); DumpBytes(StringRef(Bytes.data() + Inst.Address, Inst.Size)); if (fi->second.contains(fi->first)) // Indent simple loops. outs() << '\t'; IP->printInst(&Inst.Inst, outs(), ""); // Look for relocations inside this instructions, if there is one // print its target and additional information if available. for (unsigned j = 0; j != Relocs.size(); ++j) if (Relocs[j].first >= SectAddress + Inst.Address && Relocs[j].first < SectAddress + Inst.Address + Inst.Size) { StringRef SymName; uint64_t Addr; Relocs[j].second.getAddress(Addr); Relocs[j].second.getName(SymName); outs() << "\t# " << SymName << ' '; DumpAddress(Addr, Sections, MachOObj, outs()); } // If this instructions contains an address, see if we can evaluate // it and print additional information. uint64_t targ = InstrAnalysis->evaluateBranch(Inst.Inst, Inst.Address, Inst.Size); if (targ != -1ULL) DumpAddress(targ, Sections, MachOObj, outs()); // Print debug info. if (diContext) { DILineInfo dli = diContext->getLineInfoForAddress(SectAddress + Inst.Address); // Print valid line info if it changed. if (dli != lastLine && dli.getLine() != 0) outs() << "\t## " << dli.getFileName() << ':' << dli.getLine() << ':' << dli.getColumn(); lastLine = dli; } outs() << '\n'; } } emitDOTFile((f.getName().str() + ".dot").c_str(), f, IP.get()); } } } }
ObjectFile::section_iterator MachOObjectFile::end_sections() const { DataRefImpl DRI; DRI.d.a = MachOObj->getHeader().NumLoadCommands; DRI.d.b = 0; return section_iterator(SectionRef(DRI, this)); }