Пример #1
0
Mat_<double> worldHomToCameraHom(
    Mat_<double> const worldPtsHom,
    Mat_<double> const rotMatrix,
    Mat_<double> const translation)
{
    assert(worldPtsHom.cols == 4);
    assert(rotMatrix.rows == 3);
    assert(rotMatrix.cols == 3);
    assert(translation.rows == 3);
    assert(translation.cols == 1);

    // Convert rotMatrix + translation into a linear transformation in
    // homogeneous coordinates.
    Mat_<double> rigidMotion = Mat_<double>::zeros(4, 4);
    rotMatrix.copyTo(rigidMotion(Range(0, 3), Range(0, 3)));
    translation.copyTo(rigidMotion(Range(0, 3), Range(3, 4)));
    rigidMotion(3, 3) = 1;
    // cout << "rigidMotion: " << rigidMotion << endl;

    // Assuming camera calibration matrix is identity.
    // Note that OpenCV treats size as "[cols rows]", so matrix multiplication
    // has to be done backwards (transpose everything).
    Mat_<double> projection = Mat_<double>::eye(3, 4);
    Mat result = projection * rigidMotion * worldPtsHom.t();
    return result.t();
}
Пример #2
0
    double ConjGradSolverImpl::minimize(InputOutputArray x){
        CV_Assert(_Function.empty()==false);
        dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));

        Mat x_mat=x.getMat();
        CV_Assert(MIN(x_mat.rows,x_mat.cols)==1);
        int ndim=MAX(x_mat.rows,x_mat.cols);
        CV_Assert(x_mat.type()==CV_64FC1);

        if(d.cols!=ndim){
            d.create(1,ndim);
            r.create(1,ndim);
            r_old.create(1,ndim);
            minimizeOnTheLine_buf1.create(1,ndim);
            minimizeOnTheLine_buf2.create(1,ndim);
        }

        Mat_<double> proxy_x;
        if(x_mat.rows>1){
            buf_x.create(1,ndim);
            Mat_<double> proxy(ndim,1,buf_x.ptr<double>());
            x_mat.copyTo(proxy);
            proxy_x=buf_x;
        }else{
            proxy_x=x_mat;
        }
        _Function->getGradient(proxy_x.ptr<double>(),d.ptr<double>());
        d*=-1.0;
        d.copyTo(r);

        //here everything goes. check that everything is setted properly
        dprintf(("proxy_x\n"));print_matrix(proxy_x);
        dprintf(("d first time\n"));print_matrix(d);
        dprintf(("r\n"));print_matrix(r);

        for(int count=0;count<_termcrit.maxCount;count++){
            minimizeOnTheLine(_Function,proxy_x,d,minimizeOnTheLine_buf1,minimizeOnTheLine_buf2);
            r.copyTo(r_old);
            _Function->getGradient(proxy_x.ptr<double>(),r.ptr<double>());
            r*=-1.0;
            double r_norm_sq=norm(r);
            if(_termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && r_norm_sq<_termcrit.epsilon){
                break;
            }
            r_norm_sq=r_norm_sq*r_norm_sq;
            double beta=MAX(0.0,(r_norm_sq-r.dot(r_old))/r_norm_sq);
            d=r+beta*d;
        }



        if(x_mat.rows>1){
            Mat(ndim, 1, CV_64F, proxy_x.ptr<double>()).copyTo(x);
        }
        return _Function->calc(proxy_x.ptr<double>());
    }
Пример #3
0
/**
 * @author      JIA Pei
 * @version     2010-02-05
 * @brief       Calculate statistics for all profiles; Computer all landmarks' mean prof and covariance matrix
 * @return      void
*/
void VO_ASMNDProfiles::VO_CalcStatistics4AllProfiles()
{
    // Calcuate Inverse of Sg
    for(unsigned int i = 0; i < this->m_iNbOfPyramidLevels; i++)
    {
        Mat_<float> allProfiles = Mat_<float>::zeros( this->m_iNbOfSamples, this->m_vvvNormalizedProfiles[0][i][0].GetProfileLength() );
        Mat_<float> Covar = Mat_<float>::zeros(this->m_vvvNormalizedProfiles[0][i][0].GetProfileLength(), 
                                                this->m_vvvNormalizedProfiles[0][i][0].GetProfileLength() );
        Mat_<float> Mean = Mat_<float>::zeros(1, this->m_vvvNormalizedProfiles[0][i][0].GetProfileLength() );
        for(unsigned int j = 0; j < this->m_iNbOfPoints; j++)
        {
            for(unsigned int k = 0; k < this->m_iNbOfProfileDim; k++)
            {
                for(unsigned int l = 0; l < this->m_iNbOfSamples; l++)
                {
                    Mat_<float> tmpRow = allProfiles.row(l);
                    Mat_<float> tmp = this->m_vvvNormalizedProfiles[l][i][j].GetTheProfile().col(k).t();
                    tmp.copyTo(tmpRow);
                }

                // OK! Now We Calculate the Covariance Matrix of prof for Landmark iPoint
                cv::calcCovarMatrix( allProfiles, Covar, Mean, CV_COVAR_NORMAL+CV_COVAR_ROWS+CV_COVAR_SCALE, CV_32F);
//                cv::calcCovarMatrix( allProfiles, Covar, Mean, CV_COVAR_SCRAMBLED+CV_COVAR_ROWS, CV_32F);
                this->m_vvMeanNormalizedProfile[i][j].Set1DimProfile(Mean.t(), k);

                // Explained by YAO Wei, 2008-1-29.
                // Actually Covariance Matrix is semi-positive definite. But I am not sure
                // whether it is invertible or not!!!
                // In my opinion it is un-invert, since C = X.t() * X!!!
                cv::invert(Covar, this->m_vvvCVMInverseOfSg[i][j][k], DECOMP_SVD);
            }
        }
    }
}
Пример #4
0
Mat_<double> cartToHom(Mat_<double> const cart)
{
    Mat_<double> hom(cart.rows, cart.cols + 1, 1.0);
    Mat_<double> tmp = hom(Range::all(), Range(0, cart.cols));
    cart.copyTo(tmp);
    return hom;
}
Пример #5
0
void NNLSOptimizer::scannls(const Mat& A, const Mat& b,Mat &x)
{
    int iter = 0;
    int m = A.size().height;
    int n = A.size().width;
    Mat_<double> AT = A.t();
    double error = 1e-8;
    Mat_<double> H = AT*A;
    Mat_<double> f = -AT*b;

    Mat_<double> x_old = Mat_<double>::zeros(n,1);
    Mat_<double> x_new = Mat_<double>::zeros(n,1);

    Mat_<double> mu_old = Mat_<double>::zeros(n,1);
    Mat_<double> mu_new = Mat_<double>::zeros(n,1);
    Mat_<double> r = Mat_<double>::zeros(n,1);
    f.copyTo(mu_old);

    while(iter < NNLS_MAX_ITER)
    {
        iter++;
        for(int k=0;k<n;k++)
        {
            x_old.copyTo(x_new);
            x_new(k,0) = std::max(0.0, x_old(k,0) - (mu_old(k,0)/H(k,k)) );

            if(x_new(k,0) != x_old(k,0))
            {
                r = mu_old + (x_new(k,0) - x_old(k,0))*H.col(k);
                r.copyTo(mu_new);
            }
            x_new.copyTo(x_old);
            mu_new.copyTo(mu_old);
        }

        if(eKKT(H,f,x_new,error) == true)
        {            
            break;
        }
    }
    x_new.copyTo(x);
}
Пример #6
0
MatCluster::MatCluster(const cv::Mat_<unsigned char> &wholeOrPart,
				 int count,
				 const cv::Rect &boundsInWhole,
				 std::vector<cv::Point> deepest,
				 int smoothing, bool copy, bool matIsWhole)
				 : Cluster(count, boundsInWhole, deepest, smoothing)
{
	Mat_<unsigned char> part = matIsWhole ? wholeOrPart(boundsInWhole) : wholeOrPart;
	if (copy) part.copyTo(mat);
	else mat = part;
}
Пример #7
0
void readMat(cv::Mat_<T>& mat, char* file){
	ifstream* infile = new ifstream(file,ifstream::in|ifstream::binary);
	int rows = 0,cols = 0,type=0,size=0;
	(*infile)>>rows;
	(*infile)>>cols;
	(*infile)>>type;
	(*infile)>>size;
	char* data = new char[size];
	infile->read(data,size);
	infile->close();

	int sizes[2] = {rows,cols};
	Mat_<T> temp = Mat(2,sizes,type,data);
	temp.copyTo(mat);
	delete[] data;
}
Пример #8
0
int copyMakeBorder(/*const*/ Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst, int top, int bottom, int left, int right, int borderType, const Scalar& value = Scalar())
{
	FBC_Assert(top >= 0 && bottom >= 0 && left >= 0 && right >= 0);

	if (src.isSubmatrix() && (borderType & BORDER_ISOLATED) == 0) {
		Size wholeSize;
		Point ofs;
		src.locateROI(wholeSize, ofs);
		int dtop = std::min(ofs.y, top);
		int dbottom = std::min(wholeSize.height - src.rows - ofs.y, bottom);
		int dleft = std::min(ofs.x, left);
		int dright = std::min(wholeSize.width - src.cols - ofs.x, right);
		src.adjustROI(dtop, dbottom, dleft, dright);
		top -= dtop;
		left -= dleft;
		bottom -= dbottom;
		right -= dright;
	}

	if (dst.empty() || dst.rows != (src.rows + top + bottom) || dst.cols != (src.cols + left + right)) {
		dst.release();
		dst = Mat_<_Tp, chs>(src.rows + top + bottom, src.cols + left + right);
	}

	if (top == 0 && left == 0 && bottom == 0 && right == 0) {
		if (src.data != dst.data || src.step != dst.step)
			src.copyTo(dst);
		return 0;
	}

	borderType &= ~BORDER_ISOLATED;

	if (borderType != BORDER_CONSTANT) {
		copyMakeBorder_8u(src.ptr(), src.step, src.size(), dst.ptr(), dst.step, dst.size(), top, left, src.elemSize(), borderType);
	} else {
		int cn = src.channels, cn1 = cn;
		AutoBuffer<double> buf(cn);

		scalarToRawData<_Tp, chs>(value, buf, cn);
		copyMakeConstBorder_8u(src.ptr(), src.step, src.size(), dst.ptr(), dst.step, dst.size(), top, left, (int)src.elemSize(), (uchar*)(double*)buf);
	}

	return 0;
}
Пример #9
0
/**
 * @author     	JIA Pei
 * @version    	2010-04-03
 * @brief      	Calculate modified steepest descent image for template face - project out appearance variation
 * @return		void
*/
void VO_AAMInverseIA::VO_CalcModifiedSDI()
{
    //project out appearance variation i.e. modify the steepest descent image
    this->m_MatSteepestDescentImages = Mat_<float>::zeros(this->m_iNbOfTextures, this->m_iNbOfShapeEigens+4);
    this->m_MatModifiedSteepestDescentImages = Mat_<float>::zeros(this->m_iNbOfTextures, this->m_iNbOfShapeEigens+4);

    for (unsigned int i = 0; i < this->m_iNbOfTextures; i++)
    {
        // AAM Revisited (63)
        for (unsigned int j = 0; j < 4; j++)
        {
            this->m_MatSteepestDescentImages(i, j) = this->m_MatSteepestDescentImages4GlobalShapeNormalization(i, j);
        }
        // AAM Revisited (64)
        for (unsigned int j = 0; j < this->m_iNbOfShapeEigens; j++)
        {
            this->m_MatSteepestDescentImages(i, 4+j) = this->m_MatSteepestDescentImages4ShapeModel(i, j);
        }
    }

    Mat_<float> oneCol 				= Mat_<float>::zeros(this->m_iNbOfTextures, 1);
    Mat_<float> spanedsum 			= Mat_<float>::zeros(this->m_iNbOfTextures, 1);
    Mat_<float> modifiedoneCol 		= Mat_<float>::zeros(this->m_iNbOfTextures, 1);
    Mat_<float> oneSpanRowTranspose = Mat_<float>::zeros(this->m_iNbOfTextures, 1);

    for (unsigned int i = 0; i < this->m_MatSteepestDescentImages.cols; i++)
    {
        spanedsum = Mat_<float>::zeros(this->m_iNbOfTextures, 1);
		oneCol = this->m_MatSteepestDescentImages.col(i);
        for (unsigned int j = 0; j < this->m_iNbOfTextureEigens; j++)
        {
            oneSpanRowTranspose = this->m_PCANormalizedTexture.eigenvectors.row(j).t();
            double weight = oneSpanRowTranspose.dot(oneCol);

            // dst(I)=src1(I)*alpha+src2(I)*beta+gamma
            cv::addWeighted( spanedsum, 1.0, oneSpanRowTranspose, weight, 0.0, spanedsum );
        }

        cv::subtract(oneCol, spanedsum, modifiedoneCol);
		Mat_<float> tmpCol = this->m_MatModifiedSteepestDescentImages.col(i);
		modifiedoneCol.copyTo(tmpCol);
    }
}
Пример #10
0
Mat_<float> HistogramFeatures::derivateHistogram(Mat_<float> &Histogram){

       float tmp1, tmp2;
       Mat_<float> firstDer;
       Histogram.copyTo(firstDer);

       firstDer = cv::Mat::zeros(Histogram.rows,Histogram.cols,Histogram.type());

       firstDer(0,0) = Histogram(0,1) - Histogram(0,0);

       for(int i = 1; i < Histogram.cols; ++i){
           tmp1 = Histogram(0,i) - Histogram(0,i-1);
           tmp2 = Histogram(0,i+1) - Histogram(0,i);

           firstDer(0,i) = (tmp2 + tmp1)/2;
       }
       firstDer(0,Histogram.cols-1) = Histogram(0,Histogram.cols-1) - Histogram(0,Histogram.cols-2);

       return firstDer;
//       int i;
//       float tmp1, tmp2;

//       //compute derivative first index
//       firstderv[0] = data[1]-data[0];

//       for(i=1; i<nx-2; i++)  //compute first derivative
//       {
//           tmp1 = data[i]-data[i-1];
//           tmp2 = data[i+1]-data[i];
//           firstderv[i] = (tmp2+tmp1)/2;
//       }

//       //compute derivative last index
//       firstderv[nx-1] = data[nx-1]-data[nx-2];


}
Пример #11
0
void CThinPlateSpline::computeSplineCoeffs(std::vector<Point>& iPIn, std::vector<Point>& iiPIn, float lambda,const TPS_INTERPOLATION tpsInter)
{

	std::vector<Point>* iP = NULL;
	std::vector<Point>*	iiP = NULL;

	if(tpsInter == FORWARD_WARP)
	{
		iP = &iPIn;
		iiP = &iiPIn;

		// keep information which coefficients are set
		FLAG_COEFFS_BACK_WARP_SET = true;
		FLAG_COEFFS_FORWARD_WARP_SET = false;
	}
	else if(tpsInter == BACK_WARP)
	{
		iP = &iiPIn;
		iiP = &iPIn;

		// keep information which coefficients are set
		FLAG_COEFFS_BACK_WARP_SET = false;
		FLAG_COEFFS_FORWARD_WARP_SET = true;
	}

	//get number of corresponding points
	int dim = 2;
	int n = iP->size();

	//Initialize mathematical datastructures
	Mat_<float> V(dim,n+dim+1,0.0);
	Mat_<float> P(n,dim+1,1.0);
	Mat_<float> K = (K.eye(n,n)*lambda);
	Mat_<float> L(n+dim+1,n+dim+1,0.0);

	// fill up K und P matrix
	std::vector<Point>::iterator itY;
	std::vector<Point>::iterator itX;

	int y = 0;
	for (itY = iP->begin(); itY != iP->end(); ++itY, y++) {
		int x = 0;
		for (itX = iP->begin(); itX != iP->end(); ++itX, x++) {
			if (x != y) {
				K(y, x) = (float)fktU(*itY, *itX);
			}
		}
		P(y,1) = (float)itY->y;
		P(y,2) = (float)itY->x;
	}

	Mat Pt;
	transpose(P,Pt);

	// insert K into L
	Rect range = Rect(0, 0, n, n);
	Mat Lr(L,range);
	K.copyTo(Lr);


	// insert P into L
	range = Rect(n, 0, dim + 1, n);
	Lr = Mat(L,range);
	P.copyTo(Lr);

	// insert Pt into L
	range = Rect(0,n,n,dim+1);
	Lr = Mat(L,range);
	Pt.copyTo(Lr);

	// fill V array
	std::vector<Point>::iterator it;
	int u = 0;

	for(it = iiP->begin(); it != iiP->end(); ++it)
	{
		V(0,u) = (float)it->y;
		V(1,u) = (float)it->x;
		u++;
	}

	// transpose V
	Mat Vt;
	transpose(V,Vt);

	cMatrix = Mat_<float>(n+dim+1,dim,0.0);

	// invert L
	Mat invL;
	invert(L,invL,DECOMP_LU);

	//multiply(invL,Vt,cMatrix);
	cMatrix = invL * Vt;

	//compensate for rounding errors
	for(int row = 0; row < cMatrix.rows; row++)
	{
		for(int col = 0; col < cMatrix.cols; col++)
		{
			double v = cMatrix(row,col);
			if(v > (-1.0e-006) && v < (1.0e-006) )
			{
				cMatrix(row,col) = 0.0;
			}
		}
	}
}
Пример #12
0
void spm_bp::init_label_super(Mat_<Vec2f>& label_super_k, Mat_<float>& dCost_super_k) //, vector<vector<Vec2f> > &label_saved, vector<vector<Mat_<float> > > &dcost_saved)
{
    printf("==================================================\n");
    printf("Initiating particles...Done!\n");
    vector<Vec2f> label_vec;
    Mat_<float> localDataCost;
    for (int sp = 0; sp < numOfSP1; ++sp) {
        int id = repPixels1[sp];
        int y = subRange1[id][0];
        int x = subRange1[id][1];
        int h = subRange1[id][3] - subRange1[id][1] + 1;
        int w = subRange1[id][2] - subRange1[id][0] + 1;

        label_vec.clear();
        int k = 0;

        while (k < NUM_TOP_K) {
            float du = (float(rand()) / RAND_MAX - 0.5) * 2 * (float)disp_range_u;
            float dv = (float(rand()) / RAND_MAX - 0.5) * 2 * (float)disp_range_v;
            du = floor(du * upScale + 0.5) / upScale;
            dv = floor(dv * upScale + 0.5) / upScale;

            if (du >= -disp_range_u && du <= disp_range_u && dv >= -disp_range_v && dv <= disp_range_v) {
                int index_tp = 1;
                for (int k1 = 0; k1 < k; ++k1) {
                    if (checkEqual_PMF_PMBP(label_super_k[repPixels1[sp]][k1], Vec2f(du, dv)))
                        index_tp = 0;
                }

                if (index_tp == 1) {
                    for (int ii = 0; ii < superpixelsList1[sp].size(); ++ii)
                        label_super_k[superpixelsList1[sp][ii]][k] = Vec2f(du, dv);

                    label_vec.push_back(Vec2f(du, dv));
                    ++k;
                }
            }
        }
#if USE_CLMF0_TO_AGGREGATE_COST
        cv::Mat_<cv::Vec4b> leftCombinedCrossMap;
        leftCombinedCrossMap.create(h, w);
        subCrossMap1[sp].copyTo(leftCombinedCrossMap);
        CFFilter cff;
#endif
        int vec_size = label_vec.size();
        localDataCost.create(h, w * vec_size);
        localDataCost.setTo(0);
#pragma omp parallel for num_threads(NTHREADS)
        for (int i = 0; i < vec_size; ++i) {
            int kx = i * w;
            Mat_<float> rawCost;
            getLocalDataCostPerlabel(sp, label_vec[i], rawCost);
#if USE_CLMF0_TO_AGGREGATE_COST
            cff.FastCLMF0FloatFilterPointer(leftCombinedCrossMap, rawCost, rawCost);
#endif
            rawCost.copyTo(localDataCost(cv::Rect(kx, 0, w, h)));
        }

        //getLocalDataCost( sp, label_vec, localDataCost);

        int pt, px, py, kx;
        for (int ii = 0; ii < superpixelsList1[sp].size(); ++ii) {
            //cout<<ii<<endl;
            pt = superpixelsList1[sp][ii];
            px = pt / width1;
            py = pt % width1;
            for (int kk = 0; kk < NUM_TOP_K; kk++) {
                kx = kk * w;
                const Mat_<float>& local = localDataCost(cv::Rect(kx, 0, w, h));
                dCost_super_k[pt][kk] = local[px - x][py - y];
            }
        }
    }
    printf("==================================================\n");
}
Пример #13
0
void spm_bp::runspm_bp(cv::Mat_<cv::Vec2f>& flowResult)
{
    clock_t start_disp, finish_disp;
    start_disp = clock();
    printf("==================================================\n");
    printf("SPM-BP begins\n");

    Mat_<Vec2f> label_k(height1 * width1, NUM_TOP_K);
    Mat_<float> dcost_k(height1 * width1, NUM_TOP_K);

#ifdef _WIN32
    printf("Running on Windows\n");
    // Dummy code that speeds up program on windows considerably
    // Save label
    vector<vector<Vec2f> > label_saved(numOfSP1);
    //label_saved.reserve(10000);
    vector<vector<Mat_<float> > > dcost_saved(numOfSP1);
    //dcost_saved.reserve(10000);

    for (int i = 0; i < numOfSP1; i++) {
        label_saved[i].reserve(100000);
        dcost_saved[i].reserve(100000);
    }
#endif

    //initiate labels
    init_label_super(label_k, dcost_k);

    //MESSAGE 0:left, 1:right, 2:up, 3:down
    Mat_<Vec<float, NUM_TOP_K> > message(height1 * width1, 4);
    message.setTo(0);

    //precompute smooth weight
    float omega[256];
    for (int i = 0; i < 256; ++i)
        omega[i] = lambda_smooth * std::exp(-float(i) / 20);

    // TODO: Change to Mat4f
    Mat_<Vec4f> smoothWt(height1, width1);
    smoothWt.setTo(lambda_smooth);

// # pragma omp parallel for
    for (int i = 1; i < height1 - 1; ++i)
    {
        for (int j = 1; j < width1 - 1; ++j) {
            const Vec3f &ref = im1f[i][j];
            // TODO: Don't need abs here since norm >= 0
            // smoothWt[i][j][0] = omega[int(abs(norm(ref - im1f[i][j - 1])))];
            // smoothWt[i][j][1] = omega[int(abs(norm(ref - im1f[i][j + 1])))];
            // smoothWt[i][j][2] = omega[int(abs(norm(ref - im1f[i - 1][j])))];
            // smoothWt[i][j][3] = omega[int(abs(norm(ref - im1f[i + 1][j])))];

            smoothWt[i][j][0] = omega[int(norm(ref - im1f[i][j - 1]))];
            smoothWt[i][j][1] = omega[int(norm(ref - im1f[i][j + 1]))];
            smoothWt[i][j][2] = omega[int(norm(ref - im1f[i - 1][j]))];
            smoothWt[i][j][3] = omega[int(norm(ref - im1f[i + 1][j]))];
        }
    }

    float dis_belief_l[NUM_TOP_K];
    float dis_belief_r[NUM_TOP_K];
    float dis_belief_u[NUM_TOP_K];
    float dis_belief_d[NUM_TOP_K];

    const int BUFSIZE = NUM_TOP_K * 50;

    vector<Vec2f> vec_label(BUFSIZE), vec_label_nei(BUFSIZE);
    vector<float> vec_mes_l(BUFSIZE),
                  vec_mes_r(BUFSIZE),
                  vec_mes_u(BUFSIZE),
                  vec_mes_d(BUFSIZE),
                  vec_belief(BUFSIZE),
                  vec_d_cost(BUFSIZE);
    Mat_<float> DataCost_nei;

    start_disp = clock();
    double wall_timer = omp_get_wtime();
    if (display)
        Show_WTA_Flow(-1, label_k, dcost_k, message, flowResult);

    int spBegin, spEnd, spStep;
    for (int iter = 0; iter < iterNum; iter++) {
        if (iter % 2) {
            spBegin = numOfSP1 - 1, spEnd = -1, spStep = -1;
        }
        else {
            spBegin = 0, spEnd = numOfSP1, spStep = 1;
        }

        for (int sp = spBegin; sp != spEnd; sp += spStep) {
            int curSPP = superpixelsList1[sp][0];
            Vec4i curRange = subRange1[curSPP];
            int y = curRange[0];
            int x = curRange[1];
            int w = curRange[2] - curRange[0] + 1;
            int h = curRange[3] - curRange[1] + 1;

            // rand neighbor pixel and store
            vec_label_nei.clear();
            std::set<int>::iterator sIt;
            std::set<int>& sAdj = spGraph1[iter % 2].adjList[sp];
            for (sIt = sAdj.begin(); sIt != sAdj.end(); ++sIt) {
                repPixels1[*sIt] = superpixelsList1[*sIt][rand() % superpixelsList1[*sIt].size()];
                Vec2f test_label;
                //vector<Vec2f> & cur_label_k = label_k[repPixels1[*sIt]];
                for (int k = 0; k < NUM_TOP_K; k++) {
                    //test_label= cur_label_k[k];
                    test_label = label_k[repPixels1[*sIt]][k];
                    if (isNewLabel_PMF_PMBP(vec_label_nei, test_label) == -1)
                        vec_label_nei.push_back(test_label);
                }
            }

            repPixels1[sp] = superpixelsList1[sp][rand() % superpixelsList1[sp].size()];
            for (int k = 0; k < NUM_TOP_K; k++) {
                Vec2f test_label = label_k[repPixels1[sp]][k];
                float mag = min(disp_range_u, disp_range_v) / 8;
                for (; mag >= (1.0 / upScale); mag /= 2.0) {
                    Vec2f test_label_random;
                    float tmpVerLabel = test_label[0] + ((float(rand()) / RAND_MAX) - 0.5) * 2.0 * mag;
                    float tmpHorLabel = test_label[1] + ((float(rand()) / RAND_MAX) - 0.5) * 2.0 * mag;

                    test_label_random[0] = floor(tmpVerLabel * upScale + 0.5) / upScale;
                    test_label_random[1] = floor(tmpHorLabel * upScale + 0.5) / upScale;

                    if (test_label_random[0] >= -disp_range_u && test_label_random[0] <= disp_range_u
                        && test_label_random[1] >= -disp_range_v && test_label_random[1] <= disp_range_v
                        && isNewLabel_PMF_PMBP(vec_label_nei, test_label_random) == -1) //here
                    {
                        vec_label_nei.push_back(test_label_random);
                    }
                }
            }

            const int vec_size = vec_label_nei.size();

            // DataCost_nei.release();
            DataCost_nei.create(h, w * vec_size);
            DataCost_nei.setTo(0);
#if USE_CLMF0_TO_AGGREGATE_COST
            cv::Mat_<cv::Vec4b> leftCombinedCrossMap;
            leftCombinedCrossMap.create(h, w);
            subCrossMap1[sp].copyTo(leftCombinedCrossMap);
            CFFilter cff;
#endif

// Compute matching costs for each candidate particles
            // printf("Computing matching costs start\n");
#pragma omp parallel for num_threads(NTHREADS)
            for (int i = 0; i < vec_size; ++i) {
                int kx = i * w;
                Mat_<float> rawCost;
                getLocalDataCostPerlabel(sp, vec_label_nei[i], rawCost);
#if USE_CLMF0_TO_AGGREGATE_COST
                cff.FastCLMF0FloatFilterPointer(leftCombinedCrossMap, rawCost, rawCost);
#endif
                rawCost.copyTo(DataCost_nei(cv::Rect(kx, 0, w, h)));
            }
            //getLocalDataCost(sp, vec_label_nei, DataCost_nei);

            // printf("Computing matching costs end\n");

            Vec4i curRange_s = spRange1[curSPP];
            // int spw = curRange_s[2] - curRange_s[0] + 1;
            // int sph = curRange_s[3] - curRange_s[1] + 1;

            int spy_s, spy_e, spx_s, spx_e, spx_step, spy_step;
            spy_s = curRange_s[0];
            spy_e = curRange_s[2] + 1;
            spx_s = curRange_s[1];
            spx_e = curRange_s[3] + 1;
            spx_step = 1;
            spy_step = 1;

            if (iter % 4 == 1) {
                spy_s = curRange_s[2];
                spy_e = curRange_s[0] - 1;
                spx_s = curRange_s[3];
                spx_e = curRange_s[1] - 1;
                spx_step = -1;
                spy_step = -1;
            }
            else if (iter % 4 == 2) {
                spy_s = curRange_s[2];
                spy_e = curRange_s[0] - 1;
                spy_step = -1;
                spx_s = curRange_s[1];
                spx_e = curRange_s[3] + 1;
                spx_step = 1;
            }
            else if (iter % 4 == 3) 
            {
                spy_s = curRange_s[0];
                spy_e = curRange_s[2] + 1;
                spy_step = 1;
                spx_s = curRange_s[3];
                spx_e = curRange_s[1] - 1;
                spx_step = -1;
            }

            for (int bi = spx_s; bi != spx_e; bi = bi + spx_step)
                for (int bj = spy_s; bj != spy_e; bj = bj + spy_step) {

                    int p1 = bi * width1 + bj;
                    int pl = bi * width1 + (bj - 1);
                    int pu = (bi - 1) * width1 + bj;
                    int pr = bi * width1 + (bj + 1);
                    int pd = (bi + 1) * width1 + bj;

                    //Compute disbelief: three incoming message + data_cost
                    for (int k = 0; k < NUM_TOP_K; ++k) {
                        if (bj != 0)
                            dis_belief_l[k] = message[pl][0][k] + message[pl][2][k] + message[pl][3][k] + dcost_k[pl][k];
                        if (bj != width1 - 1)
                            dis_belief_r[k] = message[pr][1][k] + message[pr][2][k] + message[pr][3][k] + dcost_k[pr][k];
                        if (bi != 0)
                            dis_belief_u[k] = message[pu][0][k] + message[pu][1][k] + message[pu][2][k] + dcost_k[pu][k];
                        if (bi != height1 - 1)
                            dis_belief_d[k] = message[pd][0][k] + message[pd][1][k] + message[pd][3][k] + dcost_k[pd][k];
                    }

                    vec_label.clear();
                    vec_mes_l.clear();
                    vec_mes_r.clear();
                    vec_mes_u.clear();
                    vec_mes_d.clear();
                    vec_belief.clear();
                    vec_d_cost.clear();

                    // Update and save messages with current reference pixel's labels
                    Vec4f wt_s = smoothWt[bi][bj];

                    for (int k = 0; k < NUM_TOP_K; ++k) {
                        Vec2f test_label = label_k[p1][k];
                        vec_label.push_back(test_label);
                        float dcost = dcost_k[p1][k];
                        vec_d_cost.push_back(dcost);
                        //start_disp = clock();
                        float _mes_l = 0, _mes_r = 0, _mes_u = 0, _mes_d = 0;
                        if (bj != 0) {
                            _mes_l = ComputeMes_PMBP_per_label(dis_belief_l, label_k, pl, test_label, wt_s[0], tau_s);
                            vec_mes_l.push_back(_mes_l);
                        }
                        if (bj != width1 - 1) {
                            _mes_r = ComputeMes_PMBP_per_label(dis_belief_r, label_k, pr, test_label, wt_s[1], tau_s);
                            vec_mes_r.push_back(_mes_r);
                        }
                        if (bi != 0) {
                            _mes_u = ComputeMes_PMBP_per_label(dis_belief_u, label_k, pu, test_label, wt_s[2], tau_s);
                            vec_mes_u.push_back(_mes_u);
                        }
                        if (bi != height1 - 1) {
                            _mes_d = ComputeMes_PMBP_per_label(dis_belief_d, label_k, pd, test_label, wt_s[3], tau_s);
                            vec_mes_d.push_back(_mes_d);
                        }
                        vec_belief.push_back(_mes_l + _mes_r + _mes_u + _mes_d + dcost);
                    }

                    //propagation + random search

                    int kx;
                    for (int test_id = 0; test_id < vec_label_nei.size(); ++test_id) {
                        Vec2f test_label = vec_label_nei[test_id];
                        //if(isNewLabel_PMF_PMBP(vec_label,test_label)==-1)
                        {
                            vec_label.push_back(test_label);
                            kx = test_id * w;
                            const Mat_<float>& local = DataCost_nei(cv::Rect(kx, 0, w, h));
                            float dcost = local[bi - x][bj - y];
                            vec_d_cost.push_back(dcost);
                            //start_disp = clock();
                            float _mes_l = 0, _mes_r = 0, _mes_u = 0, _mes_d = 0;
                            if (bj != 0) {
                                _mes_l = ComputeMes_PMBP_per_label(dis_belief_l, label_k, pl, test_label, wt_s[0], tau_s);
                                vec_mes_l.push_back(_mes_l);
                            }
                            if (bj != width1 - 1) {
                                _mes_r = ComputeMes_PMBP_per_label(dis_belief_r, label_k, pr, test_label, wt_s[1], tau_s);
                                vec_mes_r.push_back(_mes_r);
                            }
                            if (bi != 0) {
                                _mes_u = ComputeMes_PMBP_per_label(dis_belief_u, label_k, pu, test_label, wt_s[2], tau_s);
                                vec_mes_u.push_back(_mes_u);
                            }
                            if (bi != height1 - 1) {
                                _mes_d = ComputeMes_PMBP_per_label(dis_belief_d, label_k, pd, test_label, wt_s[3], tau_s);
                                vec_mes_d.push_back(_mes_d);
                            }
                            vec_belief.push_back(_mes_l + _mes_r + _mes_u + _mes_d + dcost);
                        }
                    }

                    Compute_top_k(vec_belief, vec_label, vec_mes_l, vec_mes_r, vec_mes_u, vec_mes_d, vec_d_cost, message, label_k, dcost_k, p1, NUM_TOP_K);
                    //cout<<label_k[p1][0]<<endl;
                    Message_normalization_PMF_PMBP(message, p1, NUM_TOP_K);
                }
            //cout<<"Message "<<clock()-start_disp<<endl;
            // propagation end
        } //superpixel scan end
        if (display)
            Show_WTA_Flow(iter, label_k, dcost_k, message, flowResult);
        finish_disp = clock();
        std::cout << " time on clock(): " << (double)(clock() - start_disp) / CLOCKS_PER_SEC
                  << " time on wall: " << omp_get_wtime() - wall_timer << "\n";
    } //iteration
    Show_WTA_Flow(iterNum, label_k, dcost_k, message, flowResult);
    printf("==================================================\n");
    printf("SPM-BP finished\n==================================================\n");
}
int MultipleGraphsClassifier::predict(DisjointSetForest &segmentation, const Mat_<Vec3b> &image, const Mat_<float> &mask) {
	int maxGraphSize = max(segmentation.getNumberOfComponents(), this->maxTrainingGraphSize);
	int minGraphSize = min(segmentation.getNumberOfComponents(), this->minTrainingGraphSize);

	if (minGraphSize <= this->k) {
		cout<<"the smallest graph has size "<<minGraphSize<<", cannot compute "<<this->k<<" eigenvectors"<<endl;
		exit(EXIT_FAILURE);
	}

	// compute each feature graph for the test sample
	vector<WeightedGraph> featureGraphs;
	featureGraphs.reserve(this->features.size());

	for (int i = 0; i < (int)this->features.size(); i++) {
		featureGraphs.push_back(this->computeFeatureGraph(i, segmentation, image, mask));
	}

	// order graphs by feature, to compute pattern vectors feature by
	// feature.
	vector<vector<WeightedGraph> > graphsByFeatures(this->features.size());

	// add feature graphs for the test sample at index 0
	for (int i = 0; i < (int)this->features.size(); i++) {
		graphsByFeatures[i].reserve(this->trainingFeatureGraphs.size() + 1);
		graphsByFeatures[i].push_back(featureGraphs[i]);
	}

	// add feature graphs for each training sample
	for (int i = 0; i < (int)this->trainingFeatureGraphs.size(); i++) {
		for (int j = 0; j < (int)this->features.size(); j++) {
			graphsByFeatures[j].push_back(get<0>(this->trainingFeatureGraphs[i])[j]);
		}
	}

	// compute the corresponding pattern vectors
	vector<vector<VectorXd> > patternsByFeatures(this->features.size());
	
	for (int i = 0; i < (int)this->features.size(); i++) {
		patternsByFeatures[i] = patternVectors(graphsByFeatures[i], this->k, maxGraphSize);
	}

	// concatenate pattern vectors by image, converting to opencv format
	// to work with cv's ML module.
	Mat_<float> longPatterns = Mat_<float>::zeros(this->trainingFeatureGraphs.size() + 1, maxGraphSize * k * this->features.size());

	for (int i = 0; i < (int)this->trainingFeatureGraphs.size() + 1; i++) {
		VectorXd longPattern(maxGraphSize * k * this->features.size());
		for (int j = 0; j < this->features.size(); j++) {
			longPattern.block(j * maxGraphSize * k, 0, maxGraphSize * k, 1) = patternsByFeatures[j][i];
		}

		Mat_<double> cvLongPattern;

		eigenToCv(longPattern, cvLongPattern);

		Mat_<float> castLongPattern = Mat_<float>(cvLongPattern);

		castLongPattern.copyTo(longPatterns.row(i));
	}

	// classification of long patterns using SVM
	CvKNearest svmClassifier;

	Mat_<int> classes(this->trainingFeatureGraphs.size(), 1);
	
	for (int i = 0; i < (int)this->trainingFeatureGraphs.size(); i++) {
		classes(i,0) = get<1>(this->trainingFeatureGraphs[i]);
	}

	svmClassifier.train(longPatterns.rowRange(1, longPatterns.rows), classes);

	return (int)svmClassifier.find_nearest(longPatterns.row(0), 1);
}
Пример #15
0
/*!
* @brief Import DIP Image from given path
* @param impath : path to the image
* @param[out] I : output image
*/
template<typename T> void readDipImage(const char * impath, DipImage<T> & I)
{
	Mat_<T> J = imread(impath, 0);
	J.copyTo(I);
};
Пример #16
0
Mat_<double> estimateRotTransl(
    Mat_<double> const worldPts,
    Mat_<double> const imagePts)
{
    assert(imagePts.cols == 2);
    assert(worldPts.cols == 3);
    assert(imagePts.rows == worldPts.rows);
    // TODO verify all worldPts have z=0

    // See "pose estimation" section in the paper.

    // Set up linear system of equations.
    int const n = imagePts.rows;
    Mat_<double> F(2 * n, 9);
    for(int i = 0; i < n; i++)
    {
        F(2 * i, 0) = worldPts(i, 0);
        F(2 * i, 1) = 0;
        F(2 * i, 2) = -worldPts(i, 0) * imagePts(i, 0);
        F(2 * i, 3) = worldPts(i, 1);
        F(2 * i, 4) = 0;
        F(2 * i, 5) = -worldPts(i, 1) * imagePts(i, 0);
        F(2 * i, 6) = 1;
        F(2 * i, 7) = 0;
        F(2 * i, 8) = -imagePts(i, 0);

        F(2 * i + 1, 0) = 0;
        F(2 * i + 1, 1) = worldPts(i, 0);
        F(2 * i + 1, 2) = -worldPts(i, 0) * imagePts(i, 1);
        F(2 * i + 1, 3) = 0;
        F(2 * i + 1, 4) = worldPts(i, 1);
        F(2 * i + 1, 5) = -worldPts(i, 1) * imagePts(i, 1);
        F(2 * i + 1, 6) = 0;
        F(2 * i + 1, 7) = 1;
        F(2 * i + 1, 8) = -imagePts(i, 1);
    }

    // Find least-squares estimate of rotation + translation.
    SVD svd(F);

    Mat_<double> rrp = svd.vt.row(8);
    rrp = rrp.clone().reshape(0, 3).t();
    if(rrp(2, 2) < 0) {
        rrp *= -1;  // make sure depth is positive
    }
    // cout << "rrp: " << rrp << endl;

    Mat_<double> transl = \
        2 * rrp.col(2) / (norm(rrp.col(0)) + norm(rrp.col(1)));
    // cout << "transl: " << transl << endl;

    Mat_<double> rot = Mat_<double>::zeros(3, 3);
    rrp.col(0).copyTo(rot.col(0));
    rrp.col(1).copyTo(rot.col(1));
    SVD svd2(rot);
    rot = svd2.u * svd2.vt;
    if(determinant(rot) < 0) {
        rot.col(2) *= -1; // make sure it's a valid rotation matrix
    }
    if(abs(determinant(rot) - 1) > 1e-10) {
        cerr << "Warning: rotation matrix has determinant " \
             << determinant(rot) << " where expected 1." << endl;
    }
    // cout << "rot: " << rot << endl;

    Mat_<double> rotTransl(3, 4);
    rot.col(0).copyTo(rotTransl.col(0));
    rot.col(1).copyTo(rotTransl.col(1));
    rot.col(2).copyTo(rotTransl.col(2));
    transl.copyTo(rotTransl.col(3));
    return rotTransl;
}