Пример #1
0
MathVector tripleProduct(MathVector a, MathVector b, MathVector c)
{
	MathVector U = b.multiply(c.dotProduct(a));
	MathVector V = a.multiply(c.dotProduct(b));

	return U.subtractVectors(V);
}
Пример #2
0
minkowskiDifference_t buildMinkowskiDifference(std::vector<MathVector> a, std::vector<MathVector> b)
{
	MathVector direction = MathVector(1,1);
	std::vector<MathVector> simplex;
	simplex.push_back(getSupportVertex(a, b, direction));
	minkowskiDifference_t difference;

	direction = direction.negate();

	while(true)
	{
		simplex.push_back(getSupportVertex(a, b, direction));
		if(simplex.back().dotProduct(direction) <= 0)
		{
			difference.colliding = false;
			difference.collisionNormal = MathVector(0,0);
			difference.collisionDepth = 0;
			return difference;
		} else if(containsOrigin(simplex, direction) && simplex.size() == 3)
		{
			while(true)
			{
				//Perform EPA to get collision normal and penetration distance
				Edge_t e = findClosestEdge(simplex);

				MathVector p = getSupportVertex(a, b, direction);
				double d = p.dotProduct(e.normal);
//				std::cout << d - e.distance << std::endl;
//				std::cout << "Simplex size: " << simplex.size() << std::endl;
				if(d - e.distance < TOLERANCE)
				{
					difference.collisionNormal = e.normal;
					difference.collisionDepth = d;
					difference.colliding = true;
					return difference;
				} else
				{
//					std::cout << "Closest edge not found in this iteration, adding point to simplex and continuing." << std::endl;
					simplex.insert((simplex.begin()+e.index),p);
				}
			}
		}
	}
}
Пример #3
0
MathVector getFurthestPoint(MathVector direction, std::vector<MathVector> polygon)
	{
		double greatestDotProduct = -std::numeric_limits<double>::max();
		double currentDotProduct;
		MathVector currentVertex;
		MathVector bestVertex;
		for(int i = 0; i < polygon.size(); i++)
		{
			currentVertex = polygon[i];
			currentDotProduct = currentVertex.dotProduct(direction);
			if(currentDotProduct > greatestDotProduct)
			{
				greatestDotProduct = currentDotProduct;
				bestVertex = currentVertex;
			}
		}

		return bestVertex;

	}
typename MathVector<T>::value_type operator*(const MathVector<T>& lhs, const MathVector<T>& rhs)
{
  return lhs.dotProduct(rhs);
}