void
test_transpose_readonly(MatrixT view)
{
  typedef typename MatrixT::value_type T;

  // Check that view is initialized
  check_matrix(view, 0);

  length_type const size1 = view.size(1);

  typename MatrixT::const_transpose_type trans = view.transpose();

  test_assert(trans.size(0) == view.size(1));
  test_assert(trans.size(1) == view.size(0));

  for (index_type idx0=0; idx0<trans.size(0); ++idx0)
    for (index_type idx1=0; idx1<trans.size(1); ++idx1)
    {
      T expected = T(idx1 * size1 + idx0 + 0);
      test_assert(equal(trans.get(idx0, idx1), expected));
      test_assert(equal(trans.get(idx0,  idx1),
		   view. get(idx1, idx0)));
      }

  // Check that view is unchanged
  check_matrix(view, 0);
}
void convolute_3d_out_of_place(MatrixT& _image, MatrixT& _kernel) {

  if (_image.size() != _kernel.size()) {
    std::cerr << "received image and kernel of mismatching size!\n";
    return;
  }

  unsigned M, N, K;
  M = _image.shape()[0];
  N = _image.shape()[1];
  K = _image.shape()[2];

  unsigned fft_size = M * N * (K / 2 + 1);

  // setup fourier space arrays
  fftwf_complex* image_fourier = static_cast<fftwf_complex*>(
      fftwf_malloc(sizeof(fftwf_complex) * fft_size));
  fftwf_complex* kernel_fourier = static_cast<fftwf_complex*>(
      fftwf_malloc(sizeof(fftwf_complex) * fft_size));
  float scale = 1.0 / (M * N * K);

  // define+run forward plans
  fftwf_plan image_fwd_plan = fftwf_plan_dft_r2c_3d(
      M, N, K, _image.data(), image_fourier, FFTW_ESTIMATE);
  fftwf_execute(image_fwd_plan);

  fftwf_plan kernel_fwd_plan = fftwf_plan_dft_r2c_3d(
      M, N, K, _kernel.data(), kernel_fourier, FFTW_ESTIMATE);
  fftwf_execute(kernel_fwd_plan);

  // multiply
  for (unsigned index = 0; index < fft_size; ++index) {
    float real = image_fourier[index][0] * kernel_fourier[index][0] -
                 image_fourier[index][1] * kernel_fourier[index][1];
    float imag = image_fourier[index][0] * kernel_fourier[index][1] +
                 image_fourier[index][1] * kernel_fourier[index][0];
    image_fourier[index][0] = real;
    image_fourier[index][1] = imag;
  }

  fftwf_destroy_plan(kernel_fwd_plan);
  fftwf_destroy_plan(image_fwd_plan);

  fftwf_plan image_rev_plan = fftwf_plan_dft_c2r_3d(
      M, N, K, image_fourier, _image.data(), FFTW_ESTIMATE);
  fftwf_execute(image_rev_plan);

  for (unsigned index = 0; index < _image.num_elements(); ++index) {
    _image.data()[index] *= scale;
  }

  fftwf_destroy_plan(image_rev_plan);
  fftwf_free(image_fourier);
  fftwf_free(kernel_fourier);
}
void
fill_matrix(MatrixT view, int offset=0)
{
  typedef typename MatrixT::value_type T;

  length_type const size1 = view.size(1);

  // Initialize view

  for (index_type idx0=0; idx0<view.size(0); ++idx0)
    for (index_type idx1=0; idx1<view.size(1); ++idx1)
      view.put(idx0, idx1, T(idx0 * size1 + idx1 + offset));
}
void
check_matrix(MatrixT view, int offset=0)
{
  typedef typename MatrixT::value_type T;

  length_type const size1 = view.size(1);

  for (index_type idx0=0; idx0<view.size(0); ++idx0)
    for (index_type idx1=0; idx1<view.size(1); ++idx1)
    {
      test_assert(equal(view.get(idx0, idx1),
		   T(idx0 * size1 + idx1 + offset)));
    }
}
Пример #5
0
  void nodes_of_strongly_connected_component(MatrixT const & matrix,
                                             std::vector<IndexT> & node_list)
  {
    std::vector<bool> node_visited_already(matrix.size(), false);
    std::deque<IndexT> node_queue;

    //
    // Step 1: Push root nodes to queue:
    //
    for (typename std::vector<IndexT>::iterator it  = node_list.begin();
         it != node_list.end();
         it++)
    {
      node_queue.push_back(*it);
    }
    node_list.resize(0);

    //
    // Step 2: Fill with remaining nodes of strongly connected compontent
    //
    while (!node_queue.empty())
    {
      vcl_size_t node_id = static_cast<vcl_size_t>(node_queue.front());
      node_queue.pop_front();

      if (!node_visited_already[node_id])
      {
        node_list.push_back(IndexT(node_id));
        node_visited_already[node_id] = true;

        for (typename MatrixT::value_type::const_iterator it  = matrix[node_id].begin();
             it != matrix[node_id].end();
             it++)
        {
          vcl_size_t neighbor_node_id = static_cast<vcl_size_t>(it->first);
          if (neighbor_node_id == node_id) continue;
          if (node_visited_already[neighbor_node_id]) continue;

          node_queue.push_back(IndexT(neighbor_node_id));
        }
      }
    }

  }
Пример #6
0
  void generate_layering(MatrixT const & matrix,
                         std::vector< std::vector<IndexT> > & layer_list)
  {
    std::vector<bool> node_visited_already(matrix.size(), false);

    //
    // Step 1: Set root nodes to visited
    //
    for (vcl_size_t i=0; i<layer_list.size(); ++i)
    {
      for (typename std::vector<IndexT>::iterator it  = layer_list[i].begin();
           it != layer_list[i].end();
           it++)
        node_visited_already[*it] = true;
    }

    //
    // Step 2: Fill next layers
    //
    while (layer_list.back().size() > 0)
    {
      vcl_size_t layer_index = layer_list.size();  //parent nodes are at layer 0
      layer_list.push_back(std::vector<IndexT>());

      for (typename std::vector<IndexT>::iterator it  = layer_list[layer_index].begin();
           it != layer_list[layer_index].end();
           it++)
      {
        for (typename MatrixT::value_type::const_iterator it2  = matrix[*it].begin();
             it2 != matrix[*it].end();
             it2++)
        {
          if (it2->first == *it) continue;
          if (node_visited_already[it2->first]) continue;

          layer_list.back().push_back(it2->first);
          node_visited_already[it2->first] = true;
        }
      }
    }

    // remove last (empty) nodelist:
    layer_list.resize(layer_list.size()-1);
  }
Пример #7
0
unsigned nrow(const MatrixT& mat) {
  return mat.size();
}
void convolute_3d_in_place(MatrixT& _image, const MatrixT& _kernel,
                           const bool& _verbose = false) {

  if (_image.size() == _kernel.size()) {
    std::cerr << "received image and kernel of matching size, this makes "
                 "preparing the kernel impossible!\nExiting.\n";
    return;
  }

  if (MatrixT::dimensionality != 3) {
    std::cerr << "received image and kernel of dimension "
              << MatrixT::dimensionality
              << " that cannot be processed by convolute_3d_in_place!\n";
    return;
  }

  std::vector<unsigned> origin_image_extents(MatrixT::dimensionality);
  std::copy(_image.shape(), _image.shape() + MatrixT::dimensionality,
            origin_image_extents.begin());

  std::vector<unsigned> origin_kernel_extents(MatrixT::dimensionality);
  std::copy(_kernel.shape(), _kernel.shape() + MatrixT::dimensionality,
            origin_kernel_extents.begin());

  if (_verbose) {
    std::cout << "[convolute_3d_in_place]\timage:\n" << _image << "\n";
    std::cout << "[convolute_3d_in_place]\tkernel:\n" << _kernel << "\n";
  }
  ///////////////////////////////////////////////////////////////////////////
  // CALCULATE PADDING EXTENT
  std::vector<unsigned> common_extents(MatrixT::dimensionality);
  std::transform(origin_image_extents.begin(), origin_image_extents.end(),
                 origin_kernel_extents.begin(), common_extents.begin(),
                 add_minus_1<unsigned>());

  std::vector<unsigned> common_offsets(MatrixT::dimensionality);
  std::transform(origin_kernel_extents.begin(), origin_kernel_extents.end(),
                 common_offsets.begin(), minus_1_div_2<unsigned>());

  ///////////////////////////////////////////////////////////////////////////
  // PADD IMAGE
  image_stack padded_image(common_extents, _image.storage_order());
  image_stack_view subview_padded_image = padded_image
      [boost::indices[range(common_offsets[0],
                            common_offsets[0] + origin_image_extents[0])]
                     [range(common_offsets[1],
                            common_offsets[1] + origin_image_extents[1])]
                     [range(common_offsets[2],
                            common_offsets[2] + origin_image_extents[2])]];
  subview_padded_image = _image;
  unsigned long size_of_transform = padded_image.num_elements();

  ///////////////////////////////////////////////////////////////////////////
  // PADD KERNEL
  image_stack padded_kernel(common_extents, _kernel.storage_order());
  for (long z = 0; z < origin_kernel_extents[2]; ++z)
    for (long y = 0; y < origin_kernel_extents[1]; ++y)
      for (long x = 0; x < origin_kernel_extents[0]; ++x) {
        long intermediate_x = x - origin_kernel_extents[0] / 2L;
        long intermediate_y = y - origin_kernel_extents[1] / 2L;
        long intermediate_z = z - origin_kernel_extents[2] / 2L;

        intermediate_x = (intermediate_x < 0)
                             ? intermediate_x + common_extents[0]
                             : intermediate_x;
        intermediate_y = (intermediate_y < 0)
                             ? intermediate_y + common_extents[1]
                             : intermediate_y;
        intermediate_z = (intermediate_z < 0)
                             ? intermediate_z + common_extents[2]
                             : intermediate_z;

        padded_kernel[intermediate_x][intermediate_y][intermediate_z] =
            _kernel[x][y][z];
      }

  ///////////////////////////////////////////////////////////////////////////
  // RESIZE ALL TO ALLOW FFTW INPLACE TRANSFORM
  std::vector<unsigned> inplace_extents(3);
  adapt_extents_for_fftw_inplace(common_extents, inplace_extents,
                                 _image.storage_order());
  padded_image.resize(boost::extents[inplace_extents[0]][inplace_extents[1]]
                                    [inplace_extents[2]]);
  padded_kernel.resize(boost::extents[inplace_extents[0]][inplace_extents[1]]
                                     [inplace_extents[2]]);
  if (_verbose) {
    std::cout << "[convolute_3d_in_place]\t padded image:\n" << padded_image
              << "\n";
    std::cout << "[convolute_3d_in_place]\t padded kernel:\n" << padded_kernel
              << "\n";
  }

  float scale = 1.0 / (size_of_transform);
  fftwf_complex* complex_image_fourier = (fftwf_complex*)padded_image.data();
  fftwf_complex* complex_kernel_fourier = (fftwf_complex*)padded_kernel.data();

  // define+run forward plans
  fftwf_plan image_fwd_plan = fftwf_plan_dft_r2c_3d(
      common_extents[0], common_extents[1], common_extents[2],
      padded_image.data(), complex_image_fourier, FFTW_ESTIMATE);
  fftwf_execute(image_fwd_plan);

  fftwf_plan kernel_fwd_plan = fftwf_plan_dft_r2c_3d(
      common_extents[0], common_extents[1], common_extents[2],
      padded_kernel.data(), complex_kernel_fourier, FFTW_ESTIMATE);
  fftwf_execute(kernel_fwd_plan);

  fftwf_destroy_plan(kernel_fwd_plan);
  fftwf_destroy_plan(image_fwd_plan);
  // multiply

  unsigned fourier_num_elements = padded_image.num_elements() / 2;
  for (unsigned index = 0; index < fourier_num_elements; ++index) {
    float real =
        complex_image_fourier[index][0] * complex_kernel_fourier[index][0] -
        complex_image_fourier[index][1] * complex_kernel_fourier[index][1];
    float imag =
        complex_image_fourier[index][0] * complex_kernel_fourier[index][1] +
        complex_image_fourier[index][1] * complex_kernel_fourier[index][0];
    complex_image_fourier[index][0] = real;
    complex_image_fourier[index][1] = imag;
  }

  fftwf_plan image_rev_plan = fftwf_plan_dft_c2r_3d(
      common_extents[0], common_extents[1], common_extents[2],
      complex_image_fourier, padded_image.data(), FFTW_ESTIMATE);
  fftwf_execute(image_rev_plan);

  for (unsigned index = 0; index < padded_image.num_elements(); ++index) {
    padded_image.data()[index] *= scale;
  }

  fftwf_destroy_plan(image_rev_plan);

  _image = padded_image
      [boost::indices[range(common_offsets[0],
                            common_offsets[0] + origin_image_extents[0])]
                     [range(common_offsets[1],
                            common_offsets[1] + origin_image_extents[1])]
                     [range(common_offsets[2],
                            common_offsets[2] + origin_image_extents[2])]];
  if (_verbose) {
    std::cout << "[convolute_3d_in_place]\t padded result:\n" << padded_image
              << "\n";
    std::cout << "[convolute_3d_in_place]\t result:\n" << _image << "\n";
  }
}