void add_cube_convex_hull_to_mesh(MeshBase& mesh, Point lower_limit, Point upper_limit) { #ifdef LIBMESH_HAVE_TETGEN SerialMesh cube_mesh(mesh.comm(),3); unsigned n_elem = 1; MeshTools::Generation::build_cube(cube_mesh, n_elem,n_elem,n_elem, // n. elements in each direction lower_limit(0), upper_limit(0), lower_limit(1), upper_limit(1), lower_limit(2), upper_limit(2), HEX8); // The pointset_convexhull() algorithm will ignore the Hex8s // in the Mesh, and just construct the triangulation // of the convex hull. TetGenMeshInterface t(cube_mesh); t.pointset_convexhull(); // Now add all nodes from the boundary of the cube_mesh to the input mesh. // Map from "node id in cube_mesh" -> "node id in mesh". Initially inserted // with a dummy value, later to be assigned a value by the input mesh. std::map<unsigned,unsigned> node_id_map; typedef std::map<unsigned,unsigned>::iterator iterator; { MeshBase::element_iterator it = cube_mesh.elements_begin(); const MeshBase::element_iterator end = cube_mesh.elements_end(); for ( ; it != end; ++it) { Elem* elem = *it; for (unsigned s=0; s<elem->n_sides(); ++s) if (elem->neighbor(s) == NULL) { // Add the node IDs of this side to the set AutoPtr<Elem> side = elem->side(s); for (unsigned n=0; n<side->n_nodes(); ++n) node_id_map.insert( std::make_pair(side->node(n), /*dummy_value=*/0) ); } } } // For each node in the map, insert it into the input mesh and keep // track of the ID assigned. for (iterator it=node_id_map.begin(); it != node_id_map.end(); ++it) { // Id of the node in the cube mesh unsigned id = (*it).first; // Pointer to node in the cube mesh Node* old_node = cube_mesh.node_ptr(id); // Add geometric point to input mesh Node* new_node = mesh.add_point ( *old_node ); // Track ID value of new_node in map (*it).second = new_node->id(); } // With the points added and the map data structure in place, we are // ready to add each TRI3 element of the cube_mesh to the input Mesh // with proper node assignments { MeshBase::element_iterator el = cube_mesh.elements_begin(); const MeshBase::element_iterator end_el = cube_mesh.elements_end(); for (; el != end_el; ++el) { Elem* old_elem = *el; if (old_elem->type() == TRI3) { Elem* new_elem = mesh.add_elem(new Tri3); // Assign nodes in new elements. Since this is an example, // we'll do it in several steps. for (unsigned i=0; i<old_elem->n_nodes(); ++i) { // Locate old node ID in the map iterator it = node_id_map.find(old_elem->node(i)); // Check for not found if (it == node_id_map.end()) { libMesh::err << "Node id " << old_elem->node(i) << " not found in map!" << std::endl; libmesh_error(); } // Mapping to node ID in input mesh unsigned new_node_id = (*it).second; // Node pointer assigned from input mesh new_elem->set_node(i) = mesh.node_ptr(new_node_id); } } } } #endif // LIBMESH_HAVE_TETGEN }
void MeshTools::Subdivision::add_boundary_ghosts(MeshBase & mesh) { static const Real tol = 1e-5; // add the mirrored ghost elements (without using iterators, because the mesh is modified in the course) std::vector<Tri3Subdivision *> ghost_elems; std::vector<Node *> ghost_nodes; const unsigned int n_elem = mesh.n_elem(); for (unsigned int eid = 0; eid < n_elem; ++eid) { Elem * elem = mesh.elem(eid); libmesh_assert_equal_to(elem->type(), TRI3SUBDIVISION); // If the triangle happens to be in a corner (two boundary // edges), we perform a counter-clockwise loop by mirroring the // previous triangle until we come back to the original // triangle. This prevents degenerated triangles in the mesh // corners and guarantees that the node in the middle of the // loop is of valence=6. for (unsigned int i = 0; i < elem->n_sides(); ++i) { libmesh_assert_not_equal_to(elem->neighbor(i), elem); if (elem->neighbor(i) == libmesh_nullptr && elem->neighbor(next[i]) == libmesh_nullptr) { Elem * nelem = elem; unsigned int k = i; for (unsigned int l=0;l<4;l++) { // this is the vertex to be mirrored Point point = nelem->point(k) + nelem->point(next[k]) - nelem->point(prev[k]); // Check if the proposed vertex doesn't coincide // with one of the existing vertices. This is // necessary because for some triangulations, it can // happen that two mirrored ghost vertices coincide, // which would then lead to a zero size ghost // element below. Node * node = libmesh_nullptr; for (unsigned int j = 0; j < ghost_nodes.size(); ++j) { if ((*ghost_nodes[j] - point).size() < tol * (elem->point(k) - point).size()) { node = ghost_nodes[j]; break; } } // add the new vertex only if no other is nearby if (node == libmesh_nullptr) { node = mesh.add_point(point); ghost_nodes.push_back(node); } Tri3Subdivision * newelem = new Tri3Subdivision(); // add the first new ghost element to the list just as in the non-corner case if (l == 0) ghost_elems.push_back(newelem); newelem->set_node(0) = nelem->get_node(next[k]); newelem->set_node(1) = nelem->get_node(k); newelem->set_node(2) = node; newelem->set_neighbor(0, nelem); newelem->set_ghost(true); if (l>0) newelem->set_neighbor(2, libmesh_nullptr); nelem->set_neighbor(k, newelem); mesh.add_elem(newelem); mesh.get_boundary_info().add_node(nelem->get_node(k), 1); mesh.get_boundary_info().add_node(nelem->get_node(next[k]), 1); mesh.get_boundary_info().add_node(nelem->get_node(prev[k]), 1); mesh.get_boundary_info().add_node(node, 1); nelem = newelem; k = 2 ; } Tri3Subdivision * newelem = new Tri3Subdivision(); newelem->set_node(0) = elem->get_node(next[i]); newelem->set_node(1) = nelem->get_node(2); newelem->set_node(2) = elem->get_node(prev[i]); newelem->set_neighbor(0, nelem); nelem->set_neighbor(2, newelem); newelem->set_ghost(true); newelem->set_neighbor(2, elem); elem->set_neighbor(next[i],newelem); mesh.add_elem(newelem); break; } } for (unsigned int i = 0; i < elem->n_sides(); ++i) { libmesh_assert_not_equal_to(elem->neighbor(i), elem); if (elem->neighbor(i) == libmesh_nullptr) { // this is the vertex to be mirrored Point point = elem->point(i) + elem->point(next[i]) - elem->point(prev[i]); // Check if the proposed vertex doesn't coincide with // one of the existing vertices. This is necessary // because for some triangulations, it can happen that // two mirrored ghost vertices coincide, which would // then lead to a zero size ghost element below. Node * node = libmesh_nullptr; for (unsigned int j = 0; j < ghost_nodes.size(); ++j) { if ((*ghost_nodes[j] - point).size() < tol * (elem->point(i) - point).size()) { node = ghost_nodes[j]; break; } } // add the new vertex only if no other is nearby if (node == libmesh_nullptr) { node = mesh.add_point(point); ghost_nodes.push_back(node); } Tri3Subdivision * newelem = new Tri3Subdivision(); ghost_elems.push_back(newelem); newelem->set_node(0) = elem->get_node(next[i]); newelem->set_node(1) = elem->get_node(i); newelem->set_node(2) = node; newelem->set_neighbor(0, elem); newelem->set_ghost(true); elem->set_neighbor(i, newelem); mesh.add_elem(newelem); mesh.get_boundary_info().add_node(elem->get_node(i), 1); mesh.get_boundary_info().add_node(elem->get_node(next[i]), 1); mesh.get_boundary_info().add_node(elem->get_node(prev[i]), 1); mesh.get_boundary_info().add_node(node, 1); } } } // add the missing ghost elements (connecting new ghost nodes) std::vector<Tri3Subdivision *> missing_ghost_elems; std::vector<Tri3Subdivision *>::iterator ghost_el = ghost_elems.begin(); const std::vector<Tri3Subdivision *>::iterator end_ghost_el = ghost_elems.end(); for (; ghost_el != end_ghost_el; ++ghost_el) { Tri3Subdivision * elem = *ghost_el; libmesh_assert(elem->is_ghost()); for (unsigned int i = 0; i < elem->n_sides(); ++i) { if (elem->neighbor(i) == libmesh_nullptr && elem->neighbor(prev[i]) != libmesh_nullptr) { // go around counter-clockwise Tri3Subdivision * nb1 = static_cast<Tri3Subdivision *>(elem->neighbor(prev[i])); Tri3Subdivision * nb2 = nb1; unsigned int j = i; unsigned int n_nb = 0; while (nb1 != libmesh_nullptr && nb1->id() != elem->id()) { j = nb1->local_node_number(elem->node(i)); nb2 = nb1; nb1 = static_cast<Tri3Subdivision *>(nb1->neighbor(prev[j])); libmesh_assert(nb1 == libmesh_nullptr || nb1->id() != nb2->id()); n_nb++; } libmesh_assert_not_equal_to(nb2->id(), elem->id()); // Above, we merged coinciding ghost vertices. Therefore, we need // to exclude the case where there is no ghost element to add between // these two (identical) ghost nodes. if (elem->get_node(next[i])->id() == nb2->get_node(prev[j])->id()) break; // If the number of already present neighbors is less than 4, we add another extra element // so that the node in the middle of the loop ends up being of valence=6. // This case usually happens when the middle node corresponds to a corner of the original mesh, // and the extra element below prevents degenerated triangles in the mesh corners. if (n_nb < 4) { // this is the vertex to be mirrored Point point = nb2->point(j) + nb2->point(prev[j]) - nb2->point(next[j]); // Check if the proposed vertex doesn't coincide with one of the existing vertices. // This is necessary because for some triangulations, it can happen that two mirrored // ghost vertices coincide, which would then lead to a zero size ghost element below. Node * node = libmesh_nullptr; for (unsigned int k = 0; k < ghost_nodes.size(); ++k) { if ((*ghost_nodes[k] - point).size() < tol * (nb2->point(j) - point).size()) { node = ghost_nodes[k]; break; } } // add the new vertex only if no other is nearby if (node == libmesh_nullptr) { node = mesh.add_point(point); ghost_nodes.push_back(node); } Tri3Subdivision * newelem = new Tri3Subdivision(); newelem->set_node(0) = nb2->get_node(j); newelem->set_node(1) = nb2->get_node(prev[j]); newelem->set_node(2) = node; newelem->set_neighbor(0, nb2); newelem->set_neighbor(1, libmesh_nullptr); newelem->set_ghost(true); nb2->set_neighbor(prev[j], newelem); mesh.add_elem(newelem); mesh.get_boundary_info().add_node(nb2->get_node(j), 1); mesh.get_boundary_info().add_node(nb2->get_node(prev[j]), 1); mesh.get_boundary_info().add_node(node, 1); nb2 = newelem; j = nb2->local_node_number(elem->node(i)); } Tri3Subdivision * newelem = new Tri3Subdivision(); newelem->set_node(0) = elem->get_node(next[i]); newelem->set_node(1) = elem->get_node(i); newelem->set_node(2) = nb2->get_node(prev[j]); newelem->set_neighbor(0, elem); newelem->set_neighbor(1, nb2); newelem->set_neighbor(2, libmesh_nullptr); newelem->set_ghost(true); elem->set_neighbor(i, newelem); nb2->set_neighbor(prev[j], newelem); missing_ghost_elems.push_back(newelem); break; } } // end side loop } // end ghost element loop // add the missing ghost elements to the mesh std::vector<Tri3Subdivision *>::iterator missing_el = missing_ghost_elems.begin(); const std::vector<Tri3Subdivision *>::iterator end_missing_el = missing_ghost_elems.end(); for (; missing_el != end_missing_el; ++missing_el) mesh.add_elem(*missing_el); }