void DomainClassifierTest::test_classify_by_tag() { CPPUNIT_ASSERT( !myDomains.empty() ); MsqPrintError err(std::cerr); int def = myDomains.size(); TagHandle tag = myMesh.tag_create( "domain", Mesh::INT, 1, &def, err ); CPPUNIT_ASSERT(!err); std::vector<MeshDomain*> dom_list; std::vector<int> id_list; for (unsigned i = 0; i < myDomains.size(); ++i) { std::vector<int> vtx_data( myDomains[i].vertices.size(), i ); std::vector<int> elm_data( myDomains[i].elements.size(), i ); if (!vtx_data.empty()) { myMesh.tag_set_vertex_data( tag, vtx_data.size(), &(myDomains[i].vertices[0]), &vtx_data[0], err ); CPPUNIT_ASSERT(!err); } if (!elm_data.empty()) { myMesh.tag_set_element_data( tag, elm_data.size(), &(myDomains[i].elements[0]), &elm_data[0], err ); CPPUNIT_ASSERT(!err); } dom_list.push_back( myDomains[i].domain ); id_list.push_back( i ); } DomainClassifier domain; DomainClassifier::classify_by_tag( domain, &myMesh, "domain", &dom_list[0], &id_list[0], myDomains.size(), err ); CPPUNIT_ASSERT(!err); check_domain( domain ); }
// Routine to create initial mesh for test. // o Marks vertices at a greater topological depth than the specified // value as slaved. // o Perturbs higher-order vertices on skin towards element center // o Marks skin vertices as fixed int main( int argc, char* argv[] ) { if (argc != 4) usage(argv[0]); char* endptr = 0; const long n = strtol( argv[1], &endptr, 0 ); if (*endptr || n < 0) usage(argv[0]); // read input mesh MeshImpl mesh; MsqPrintError err(std::cerr); mesh.read_vtk( argv[2], err ); if (err) return 1; // get skin vertices mesh.mark_skin_fixed( err, true ); if (err) return 1; std::vector<Mesh::VertexHandle> verts; mesh.get_all_vertices( verts, err ); if (err) return 1; std::vector<bool> fixed; mesh.vertices_get_fixed_flag( arrptr(verts), fixed, verts.size(), err ); if (err) return 1; std::vector<Mesh::VertexHandle> skin; for (size_t i = 0; i < verts.size(); ++i) if (fixed[i]) skin.push_back( verts[i] ); // create map for vertex depth, and initialize to 0 for skin vertices std::map<Mesh::VertexHandle,int> depth; std::map<Mesh::VertexHandle,int>::iterator d_iter; for (size_t i = 0; i < skin.size(); ++i) depth[skin[i]] = 0; // get all elements std::vector<Mesh::ElementHandle> curr, next; std::vector<Mesh::ElementHandle> conn; std::vector<size_t> off; mesh.get_all_elements( next, err ); // build sorted list of higher-order vertices std::vector<Mesh::VertexHandle> higher_order; for (size_t i = 0; i < next.size(); ++i) { Mesh::ElementHandle elem = next[i]; conn.clear(); mesh.elements_get_attached_vertices( &elem, 1, conn, off, err ); if (err) return 1; EntityTopology type; mesh.elements_get_topologies( &elem, &type, 1, err ); std::copy( conn.begin() + TopologyInfo::corners(type), conn.end(), std::back_inserter( higher_order ) ); } std::sort( higher_order.begin(), higher_order.end() ); higher_order.erase( std::unique( higher_order.begin(), higher_order.end() ), higher_order.end() ); // build depth map for all vertices while (!next.empty()) { curr.swap( next ); next.clear(); while (!curr.empty()) { Mesh::ElementHandle elem = curr.back(); curr.pop_back(); conn.clear(); mesh.elements_get_attached_vertices( &elem, 1, conn, off, err ); if (err) return 1; int min = std::numeric_limits<int>::max(); for (size_t i = 0; i < conn.size(); ++i) { d_iter = depth.find( conn[i] ); if (d_iter != depth.end() && d_iter->second < min) min = d_iter->second; } if (min == std::numeric_limits<int>::max()) { next.push_back( elem ); continue; } for (size_t i = 0; i < conn.size(); ++i) { d_iter = depth.find( conn[i] ); if (d_iter == depth.end() || d_iter->second > min+1) depth[conn[i]] = min+1; } } } // write depth map to tag for debugging purposes std::vector<int> depth_vals(verts.size()); for (size_t i = 0; i < verts.size(); ++i) depth_vals[i] = depth[verts[i]]; TagHandle tag = mesh.tag_create( "depth", Mesh::INT, 1, 0, err ); if (err) return 1; mesh.tag_set_vertex_data( tag, verts.size(), arrptr(verts), arrptr(depth_vals), err ); if (err) return 1; // set tag specifying slaved vertices for (size_t i = 0; i < verts.size(); ++i) if (std::binary_search( higher_order.begin(), higher_order.end(), verts[i] )) depth_vals[i] = depth[verts[i]] > n; else depth_vals[i] = 0; tag = mesh.tag_create( "slaved", Mesh::INT, 1, 0, err ); if (err) return 1; mesh.tag_set_vertex_data( tag, verts.size(), arrptr(verts), arrptr(depth_vals), err ); if (err) return 1; // perturb mid-edge nodes along boundary std::vector<MsqVertex> coords; for (size_t i = 0; i < skin.size(); ++i) { if (!std::binary_search( higher_order.begin(), higher_order.end(), skin[i])) continue; curr.clear(); mesh.vertices_get_attached_elements( &skin[i], 1, curr, off, err ); if (err) return 1; assert(curr.size() == 1); conn.clear(); mesh.elements_get_attached_vertices( arrptr(curr), 1, conn, off, err ); if (err) return 1; // estimate element center coords.resize( conn.size() ); mesh.vertices_get_coordinates( arrptr(conn), arrptr(coords), conn.size(), err ); if (err) return 1; Vector3D mean(0.0); for (size_t j = 0; j < coords.size(); ++j) mean += coords[j]; mean /= coords.size(); size_t idx = std::find( conn.begin(), conn.end(), skin[i] ) - conn.begin(); assert(idx < conn.size()); Vector3D init = coords[idx]; Vector3D pos = (1 - PERTURB_FRACT) * init + PERTURB_FRACT * mean; mesh.vertex_set_coordinates( skin[i], pos, err ); if (err) return 1; } mesh.write_vtk( argv[3], err ); if (err) return 1; return 0; }